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1. Introduction 

 
Artificial intelligence (AI) is actively being 

researched across industries because it can solve 

problem solving that are either complex for 

conventional methods or need to complicated 

computation. In particular, AI is being used in the field 

of nuclear power plants, where conventional methods 

can’t be problem solving. However, no papers or 

reports have been published in Republic of Korea that 

provide a comprehensive overview of the current status 

of AI's application in nuclear power plants. This lack of 

information makes it difficult for researchers who wish 

to apply AI in this field. 

 

This paper analyzes and summarizes current 

domestic and international research on the application 

of AI to nuclear power generation. The analysis is 

classified into three categories: the field of nuclear 

power generation, training data, and learning algorithms. 

The purpose of categorizing into three categories is to 

examine the relationship among the categories. 

 

2. What is artificial intelligence? 

 

For researchers new to AI, this chapter provides a 

brief overview about AI. 

 

2.1 AI Overview 

 

Artificial intelligence is the implementation of human 

intelligence into machines or computer programs. To do 

this, computer systems are designed to mimic human 

learning and judgement, such as analyzing data and 

patterns to solve problems, making inferences and 

decisions [1].  

 

Deep
Learning

Machine
Learning

Artificial
Intelligence Method of teaching computers to automatically learn patterns and make 

predictions from data..

• Supervised Learning: Learn both the input (x) and the answer (y)

• Unsupervised learning: learn from input (x) only, without answer (y)  

• Reinforcement learning: learning by rewarding behavior against behavior

Intelligent computer systems that can carry out tasks requiring human-
like cognitive abilities.

• Strong AI: Artificial intelligence that is equal to or exceeds human intelligence in
a wide range of cognitive tasks. 

• Weak AI: Designed to perform specific tasks and have a narrow range of 
cognitive abilities

Subset of machine learning that uses deep neural networks to model and 
solve complex problems.

• CNN: A neural network that learns features from a layer of data

• RNN: A neural network that processes sequenced data

• DBN: A neural network with a probability layer that extracts features from data

• GAN: A neural network that generates images or speech using learned patterns.

• AutoEncoder: A neural network that copies input to output

• Transformer: A neural network whose input length does not affect the output.  

Fig. 1. The classification of AI[1] 

 

AI is generally classified into two categories: Strong 

AI and Weak AI[2]. Strong AI refers to AI that 

completely mimics human learning, reasoning, and 

judgement, and is defined as the level at which an 

artificially created being can behave as an intelligent 

life form, much like a human. Weak AI, on the other 

hand, refers to AI that has been created for a specific 

purpose and can solve the belongs to problems within a 

limited scope. To date, most AI programs corresponds 

to the latter category. 

 

Machine learning (ML) is also a critical component 

of AI. It is the technology that builds artificial 

intelligence models using algorithms that can learn on 

their own, based on data rather than human-defined 

rules. These models can identify patterns based on 

training data and make predictions or classifications on 

new data. Deep learning is a branch of machine learning 

that uses artificial neural networks to automatically 

learn from large amounts of data. Deep learning is 

widely used to build artificial intelligence models in 

various fields, including computer vision, speech 

recognition, and natural language processing. 

 

3. Classification of AI applied to nuclear R&D 

 

In this chapter, AI research cases applied to the 

nuclear power R&D are classified in three different 

ways to evaluate their relevance. The first classification 

is based on the nuclear power plant field, which 

provides insight into the specific applications of AI in 

this domain. The second classification is based on the 

type of training data used, which helps to identify the 

types of data that are most useful for training AI models 

in this field. Finally, the third classification is based on 

the learning algorithm used, which provides a better 

understanding of the different approaches to AI 

modeling in the nuclear power field. Through these 

three classifications, we can gain a comprehensive 

understanding of the current state of AI research in the 

nuclear power field and identify potential areas for 

future research and development. 

 

3.1 The classification by nuclear power generation field  

 

 First, the field of nuclear power generation is 

typically categorized into four categories: diagnosis, 

prediction, response, and process. Diagnosis is mainly 

applied to the detection of abnormalities in nuclear 

power plant equipment. Prediction is used to prevent 

accidents by predicting transient conditions or severe 

accidents in nuclear power plants. Response is applied 
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to real-time risk assessment and emergency response in 

the event of a severe accident at nuclear power plant. 

Process is used to optimize the design and operation of 

nuclear power plants. 

 

By classifying AI research cases in this manner, we 

can better understand the specific applications of AI in 

the nuclear power field and identify areas for further 

research and development. 

13 13
Diagnostic Prediction

Response

Reactor design and 
3D printing

Radiographic 
process diagnostics

Power plant device 
monitoring (B)

Reactor operations 
optimization

Digital twin
(A+B)

Reactor Multiphysics 
computational 

modeling

Power plants 
accident estimation

Measuring radiation 
outside a power 
plant to estimate 
internal events

Anomaly detection

Process

 
Fig. 2. The classification of nuclear power generation fields 

 

3.1.1 Diagnosis 

 

J. Ma [3] categorized six types of faults in nuclear 

power plants: instrument degradation, measurement 

channel dynamic degradation, equipment fault detection, 

reactor coolant system components, reactor core 

abnormalities, and power plant transient detection. 

Table I illustrates the application of artificial 

intelligence in nuclear power plants, categorizing the 

faults into two main categories: instrument fault 

detection (including instrument performance 

degradation, measurement channel dynamic degradation, 

equipment fault detection, reactor coolant system 

component defects, and reactor core abnormalities) and 

power plant fault detection (specifically power plant 

transient detection). As demonstrated in Table I, the 

selection of an appropriate AI algorithm is dependent 

on both the type of data being analyzed and the 

characteristics of the system. 

 
Table I. An example of AI applications in diagnostics 
Classification Purpose AI Performance / limit Reference 

Instrument 

fault 

detection 

Learning from sensor 

errors that can lead 

to human error 

LSTM 

Learn sensor 

performance 

diagnostics / 

Multiple faults are 

not 

diagnosable 

[4] 

Drift estimation for 

reactor coolant 

sensors 

SVM 

 Random 

Forest  

Estimating 

anomalous sensors 

by training on 

healthy sensor 

data 

[5] 

Diagnose multiple 

faults in 

a sensor 

K-NN 
Drift diagnostics 

for sensors 
[6] 

Diagnosing crack 

defects in rotary 

Decision 

Tree 

Power plant 

turbine fault 
[7] 

machines diagnostics 

Diagnosing a steam 

generator tube 

rupture 

Logistic 

Regression 

ANN 

SVM 

Random 

Forest 

Diagnosing SGTR [8] 

Crack detection in 

concrete 
CNN 

Works without 

utilizing image 

processing 

techniques for 

feature extraction 

[9] 

Power plant 

fault 

detection 

Create a collision 

database to detect 

foreign objects in 

cooling systems and 

compare them using 

artificial intelligence 

learning methods 

SVM 

GP 

ANN  

CNN 

Metal fragment 

location mass 

diagnostics 

comparison 

[10] 

Estimate the mass of 

a metal fragment that 

hits a pipe or wall 

with HMM and 

ANN methods 

ANN  

Estimate the location 

and mass of a 

fragment using 

training 

data 

[11] 

Detect foreign object 

collisions with noise 

cancellation 

SVM 
Detect impact only / 

no location & mass 
[12] 

Detecting anomalies 

in 

pressure tube 

ultrasonic 

inspection data of 

CANDU- 

type reactor fuel 

CNN 
Pressure tube 

anomaly detection 
[13] 

A Convolutional 

Neural Network 

Model for Nuclear 

Abnormalities 

Diagnosis is 

proposed 

CNN 

Two-channel CNN 

models outperform 

other classification 

models in terms of 

accuracy and 

reliability 

[14] 

The problem of 

choosing among the 

several measured 

plant parameters 

those to be used for 

efficient, early 

transient diagnosis is 

tackled by means of 

genetic algorithms. 

GA 

Diagnostics using 

transient key 

parameters 

[15] 

Multi-Incident 

Diagnostic System 

with Limited 

Measurement 

Parameters 

GNN 

Nuclear accident 

diagnosis through 

key parameters of 

nuclear power plants 

[16] 

Long short-term memory (LSTM), Support vector machine (SVM), K-nearest neighbor (KNN), 

Deep Q-network (DQN), Gaussian process (GP), Radial basis function network (RBFN), 

Artificial neural network (ANN), Hidden Markov model (HMM), Convolutional neural 

network (CNN), Graph neural network (GNN) 

 

3.1.2 Prediction 

 

In the field of nuclear power, prediction refers to the 

prediction of transients or critical accidents in nuclear 

power plants. For instance, artificial intelligence can be 

used to predict the progression of a Loss of Coolant 
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Accident (LOCA) faster than a RELAP5 (Reactor 

Excursion and Leak Analysis Program) accident 

simulation by applying AI learning to the LOCA 

accident progression [47]. Additionally, AI can be used 

to predict severe accidents, such as performing 

uncertainty analysis of nuclear power plants by learning 

key parameters of accidents from MELCOR(Methods 

for Estimation of Leakages and Consequences of 

Releases)  data [2, 23]. Table II illustrates examples of 

AI applications in the field of prediction in nuclear 

power. 
 

Table II. An example of AI applications in prediction 

Classification Purpose AI Performance / limit 
Refer

ence 

Anomaly 

prediction 

Predicting NPP 

parameter trends 

based on device 

control, comparing 

different algorithms 

LSTM, 

RNN 

LSTM with MIMO 

strategy achieves 

90%accuracy on 

average 

[17] 

Distinguish between 

SBLOCA and SGTR 

by predicting safe 

stops in SGTR 

scenarios 

Transformer 
 

Distinguish between 

SBLOCA and SGTR 

by predicting safe 

stops in SGTR 

scenarios 

[18] 

Predicting 

steam/water 

stratified flow’s 

characteristics. 

LSTM  

SVM  

MLP  

The predicted 

pressure shows a 

trend similar to the 

values obtained from 

the thermal–hydraulic 

modelling 

[19] 

Predicting integrity 

of the vessel 
LSTM 

Train the ASTM 

PLOTTER database to 

predict the integrity 

of a vessel 

[20] 

A new method 

based on Recurrent 

Neural Networks for 

calculating the 

Critical Heat Flux 

(CHF) in fuel 

assemblies 

RNN 

the neural network 

model can reasonably 

well predict both the 

value of the CHF  and 

its location without 

the need of any 

additional correction 

factors. 

[21] 

A new method 

based on Recurrent 

Neural Networks for 

calculating the 

Critical Heat Flux 

(CHF) in fuel 

assemblies 

LSTM 

the neural network 

model can reasonably 

well predict both the 

value of the CHF  and 

its location without 

the need of any 

additional correction 

factors. 

[22] 

Predicting 

decomposition by 

neutron irradiation 

of reactor pressure 

vessels 

SVM  

Random 

Forest  

XGB  

Decision 

Tree  

Predicting Pressure 

Vessel Anomalies 

with Neutron 

Metrics 

[23] 

Predicting 

severe 

accident 

Predict Critical Heat 

Flux for Fuel 

Bunches with Non- 

Uniform Heat Fluxes 

RNN 
Training EPRI CHF 

data to predict CHF 
[24] 

Predicting Failure 

Thresholds for 

Nuclear Power Plant 

Gate Valves 

RNN 
ON OFF Valve life 

prediction 
[25] 

Predicting accidents 

by changing 

parameters in 

drywells 

LSTM  
Using Fukushima 

accident data 
[26] 

Extreme gradient boosting (XGB) 

 

 

3.1.3 Response 

 

Table III. shows an example of AI applications in 

response. In the field of nuclear power plants, response 

has been actively studied to date, but compared to the 

previous cases, it is an area that requires more research. 

When a Design Basis Accident (DBA) occurs in a 

nuclear power plant, AI can learn the internal data of 

the nuclear power plant to respond quickly to the DBA 

[27]. However, in the case of an isolated power failure, 

such as the Fukushima accident, the internal data of the 

nuclear power plant cannot be utilized if the connection 

between the nuclear power plant and the outside world 

is cut off. To address this issue, it is necessary to 

measure the radiation dose from outside the plant to 

determine the extent of the accident [29]. 

In addition, there is also active research on digital 

twins [30-32]. This technology enables the 

comprehensive reproduction of the intricate 

infrastructure of nuclear power plants in digital form, 

allowing for not only visual representation but also 

precise simulation of the physical and mechanical 

properties between components. For instance, by 

creating a virtual replica of an actual power plant and 

integrating real-time measurement data, computer-based 

operation becomes possible to replicate the exact 

conditions of the real power plant. 

 
Table III. An example of AI applications in response 

Classification Purpose AI 
Performance/ 

limit 
Reference 

Incident 

estimation 

Real-time 

accident 

estimation using 

internal nuclear 

data 

Transformer  

Estimate incidents 

using on- and off- 

site data 

[27] 

Identifying 

nuclide types in 

water 

DGNN 

Estimating the 

concentration of 

radioactive 

material in water 

during an accident 

[28] 

Accident 

Prediction Using 

External 

Radiation Dose in 

Nuclear 

Accidents 

Decision Tree 

Estimation using 

only marginalized 

radiation data 

[29] 

Digital twins 

Digital twin 

model to predict 

power 

distribution in 

nuclear reactors 

SVM 

AE 

Predicting output 

distributions 
[30] 
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Suggestions for 

self- calibration of 

digital twin 

models 

BPNN 

Autonomous 

calibration of key 

parameters 

prevents power 

plants from going 

into transients or 

severe accident 

[31] 

Nuclear power 

plant startup and 

output operation 

automation 

A3C 

LSTM 
 

Implementing 

only part of the 

nuclear power 

plant 

[32] 

Depp graph neural network(DGNN), Auto encoder(AE), Back propagation neural network 

(BPNN), Asynchronous advantage actor-critic (A3C) 
 

3.1.4 Process 

 

The process of a nuclear power plant can be divided 

into two areas: control and design. In the control field, 

researchers are studying ways to reduce human 

reliability analysis (HRA) during plant startup and 

shutdown operations using AI [33], using genetic 

algorithms to prolong the equilibrium cycle and use fuel 

more efficiently [34], and developing control models 

for autonomous operation [35]. Additionally, research is 

underway to automatically recognize and classify 

documents created inside nuclear power plants for 

operation efficiently [36]. 

 

In the design field, the introduction of AI can lead to 

optimized designs of nuclear power plants [35] and the 

efficient design of nuclear power plants [37]. Table IV 

shows the examples of AI applications in the process 

field. 

 
Table IV. An example of AI applications in process 
Classification Purpose AI Performance / Limit Reference 

Nuclear 

Power 

Control 

Quantifying HEP 

to reduce HRA in 

nuclear plant 

startup and 

shutdown 

operations 

BBN 

Create a BBN model 

and compare it to 

existing practices 

[33] 

Using genetic 

algorithms to 

prolong the core 

equilibrium cycle 

of PWRs 

 GA 

Maintain an 

equilibrium cycle 

with optimized  

fuel placement 

[34] 

Developing Fuel 

Management 

Tools for the 

Advanced Heavy 

Water Reactor 

CARS-ANN 
Streamline fuel 

management 
[35] 

Simple Model 

Predictive 

Control for 

Nuclear Power 

Plant 

Autonomous 

Operation 

SVR 

GRU 

LSTM 

Predict and control 

nuclear power plant 

key parameters 

[36] 

Automatic 

recognition 

system for 

document 

Cascade R-

CNN 

Auto categorizing 

documents 
[37] 

digitization in 

nuclear power 

plants 

Reactor 

Design 

Calculating the 

coefficient of 

friction of sump 

filters and 

pipelines for 

long-term cooling 

of a pipe break 

scenario at the 

ACP100 nuclear 

power plant. 

Random 

Forest  

Using limited scope 

and calculated 

algorithms  

[38] 

Predict core 

parameters for 

core design 

Decision 

Tree 

SVM 

Random 

Forest 

ANN 

Performance 

comparison of the 

four algorithms for 

the reactor design 

confirms the relative 

superiority of the 

DLP method 

[39] 

Evaluating 

seismic effects on 

the core design of 

an advanced gas-

cooled reactor 

CNN 

DNN 

Design more time-

efficiently than 

traditional methods 

[40] 

 Bilateral-branch network(BBN), Genetic algorithm(GA), Gated recurrent unit (GRU) 

 

3.2 The classification by training data type 
 
The second classification is to classify the training data 

by type. The types of data are generally divided into 

structured data, unstructured data, and time series data. 

The structured data in nuclear power plants refers to 

data generated during their normal operation, such as 

the data measured from power plant equipment and 

radiation instruments. Structured data has a fixed format, 

making it relatively easy to analyze. In contrast, The 

unstructured data, such as text, voice, video, and images, 

does not have a fixed format. An example of 

unstructured data in nuclear power plants is Closed-

Circuit Television (CCTV) data during plant operation, 

which needs to be transformed into structured data to 

apply AI. The time series data in nuclear power plants 

is data that has chronological order, such as analogue 

data generated by simulation programs like MAAP 

(Modular Accident Analysis Program) [41] and 

MELCOR [42], and data measured during a severe 

accident in an analogue manner.  
Table V shows the classification of research cases 

according to data types. Most of the data is made up of 

time series data 

 
Table V. The classification by training data type 

Data Type Reference 
Classification of 
nuclear power 

generation fields 

Structured data 
[4,5], [8-16], [19-28], [32-34], 

[36-40] 

diagnostic, 
prediction, 
prediction 

Unstructured 
data 

[6], [7], [17,18], [29-31], [35] 
diagnostic, response, 
prediction,  process 

Time series data 
[4-8],[10],[12-19].[21-26],[28-

40] 
diagnostic, response, 

prediction 
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3.3 The classification based on learning algorithms. 

 
The third classifications based on learning algorithms 

include supervised learning, unsupervised learning, and 

reinforcement learning. The supervised learning is a 

method of inferring the correct answer to real data by 

learning training data with correct answers. A typical 

example is regression analysis to predict or classify the 

correct answer. The unsupervised learning infers the 

correct answer from training data that does not have a 

correct answer. It is a method of inferring patterns or 

rules from data to obtain structure. A typical example is 

learning the consumption patterns of shopping mall 

users and recommending the products that the 

customers are needed. The reinforcement learning infers 

the correct answer without data, through behaviors that 

maximizes rewards in the current state. Typical 

examples include Deep blue in chess and  

AlphaGo in Go. 

 

A typical example of supervised learning in the field of 

nuclear power generation is the detection of abnormal 

vibration of pumps in the primary coolant. To detect 

abnormal vibrations, vibration data is learned, and the 

actual data is used to determine whether the pump is 

abnormal or not. A typical example of unsupervised 

learning is learning key parameters of transients in 

nuclear power plants to predict the trend of future 

transients or critical accidents. A typical example of 

reinforcement learning is the autonomous calibration of 

key parameters of nuclear power plants using digital 

twins. Through digital twins, a virtual power plant like 

a real nuclear power plant is created and various key 

parameters are learned. When the learned virtual power 

plant receives the key parameters, it corrects the key 

parameters of the nuclear power plant to prevent 

transient conditions or severe accidents from occurring. 

 

Table VI shows that researchers interested in studying 

the diagnosis, prediction, and process fields of nuclear 

power plants should use supervised learning algorithms. 

CNN, which is strong in image data analysis, and RNN 

and LSTM, which excel in time series analysis, are the 

most active algorithms in this category. Unsupervised 

learning algorithms are recommended for studying the 

diagnosis, response, and process fields, with the GAN 

algorithm being efficient for learning with limited data 

and the Transformer algorithm attracting attention for 

its excellent learning performance. For researchers 

studying the diagnosis and response fields, 

reinforcement learning algorithms such as DQN 

algorithms, which excel in sequential decision 

processing in high-dimensional spaces, and Trust region 

policy optimization(TRPO) algorithms, which can 

directly determine behavior, are recommended. 

 

 

Table VI. The classification of learning algorithms and 

nuclear power generation fields 

 

4. Conclusions 

 

In conclusion, the application of AI in the field of 

nuclear power plants has great potential to improve 

safety, efficiency, and productivity. Through the 

integration and summary of existing AI research in this 

field, we have provided a guide for researchers who 

want to apply AI to nuclear power plants. In particular, 

supervised learning algorithms are recommended for 

diagnostics, prediction, and processes, while 

unsupervised learning algorithms are recommended for 

diagnosis and prediction, and reinforcement learning 

algorithms are recommended for response and process.  
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