

KNS 2023 Spring Conference 2023 춘계학술대회

Korea Nuclear Society (KNS)

Auxiliary Power System and Protection Scheme for SMR Generating Stations

Authors: Choong-koo Chang, Woong-kyu Lee

Dept. of Nuclear Power Plant Engineering,

KINGS KEPCO International Nuclear Graduate School(KINGS).

Ulju-gun, Ulsan 45014

1. Introduction

2. Auxiliary Power System and Protection Scheme

for SMR Generating Stations

3. Conclusion

1. Introduction

- Importance of electric systems for safety in nuclear power plants
- Advantages of Small Modular Reactors (SMRs)
- Purpose of this paper: propose a novel electrical configuration and protection scheme for SMR generating stations

2.1 Requirements Review and Analysis

1) Special Feature of SMRs

- Flexibility
- Scalability
- Enhanced Safety
- Reduced environmental impact
- Compatibility with renewables
- 2) Conformity of regulatory requirements:
 - GDC 2, 4, 5, 17, 18 and 33,
 - IEEE Std. 308-2001

SMART Passive Cooling System

2.2 Functional Analysis and Physical Allocation **KINGS** KINGS KEPCO IN

- 1) Design Philosophies of Electric Power System
 - **Redundancy**: multiple backup power supplies
 - **Diversity**: variety of different backup power supplies
 - Reliability: ability to provide consistent and continuous supply of electrical power
 - **Robustness**: withstand severe weather event, earthquake, other disasters
 - Safety Systems: emergency power system

2.2 Functional Analysis and Physical Allocation **KINGS** KEPCO INTERNATIONAL REPCO INTERNATIONAL

2) Major Electrical Components and Systems

- Main Transformer
- Unit Auxiliary Transformers
- Medium Voltage Switchgears
- Low Voltage Switchgears and MCCs
- Emergency Power Systems
- 125V DC Distribution system
- Instrument and Control Power System

Power Transformer

Medium Voltage Switchgear

2.3 Design Definition

1) Defense in Depth (DID) and Implementation of AI and IoT Technologies

- Layers of protection:
- prevention,
- detection,
- mitigation,
- containment,
- and emergency response

Level of defence in depth	Objective	Essential means
Level 1	Prevention of abnormal operation and failures	Conservative design and high quality in construction and operation
Level 2	Control of abnormal operation and detection of failures	Control, limiting and protection systems and other surveillance features
Level 3	Control of accidents within the design basis	Engineered safety features and accident procedures
Level 4	Control of severe plant conditions, including prevention of accident progression and mitigation of the consequences of severe accidents	Complementary measures and accident management
Level 5	Mitigation of radiological consequences of significant releases of radioactive materials	Off-site emergency response

Digital Protective Relays

KINGS KEPCO INTERNATIONAL NUCLEAR GRADUATE SCHOOL

2.3 Design Definition

- 2) Voltage Level Selection
 - 13.8 kV or 4.16 kV (North American),
 - 11 kV or 6.6 kV (Europe, Middle East, Africa),
 - 400V or 480V (low voltage)

✤ ANSI C84.1

Voltage Class	Nominal System Voltage
Low Voltage	480V
	4,160V
Medium Voltage	6,900V
	13,800V

- North American Design -

✤ IEC 60038

Highest voltage for equipment(kV)	Nominal system voltage (kV)
3.6	3.3 / 3
7.2	6.6 / 6
12	11 / 10

- European Design -

2.3 Design Definition

3) Ratings and Specifications of Major Equipment

- main transformer,
- unit auxiliary transformers,
- medium voltage switchgears,
- low voltage switchgears and MCCs,
- emergency generator
- DC and IP system

Emergency Diesel Generator

- 4) Electrical Protection System : Benefits of IEC 61850:
 - Standardization: Explain how the international standard promotes interoperability, leading to increased efficiency and reduced costs
 - Flexibility and Scalability: Highlight the ability to customize the communication system according to specific needs and accommodate future applications
 - High Performance and Cybersecurity: Emphasize the real-time monitoring, control, and protection capabilities, along with the security features against cyber-attacks
 - Fault Tolerance and Diagnosis: Mention the use of redundant communication paths and devices for high availability and detailed diagnostic information for proactive maintenance

3. Conclusion

- Growing concerns on SMRs:
 - Increasing number of countries incorporating SMRs in their energy mix
 - Influenced by climate change and carbon net zero policies
- Licensing Challenges:
 - Lack of separate codes and regulations for SMRs
 - Existing regulations for large nuclear power plants applied as a substitute
- Urgent Need for Tailored Regulations:
 - Establishing licensing regulations specific to SMRs is crucial
 - Criteria and guidelines must align with the unique characteristics of SMRs

Proposed Solution:

- This paper suggests design criteria and guidelines for SMR auxiliary power systems
- Aim to develop more precise, safe, and efficient regulations in the future

THANK YOU!

Q & A

Simplified Single Line Diagram for SMRs (2 units)