Radioactivity Measurement of ⁶⁰Co using $4\pi\beta(LS) - \gamma$ Coincidence System

Jinyu Kim

HANARO Utilization Division

Korea Atomic Energy Research Institute (KAERI)

May 18, 2023

KNS 2023 Spring

- Production of radioisotopes (RI) in research reactor HANARO
- Reactor-produced ¹⁷⁷Lu → radioactivity measurement
- Measurement method: $4\pi\beta \gamma$ coincidence counting
- HANARO

Lutetium

• $4\pi\beta - \gamma$ coincidence counter

$4\pi\beta(LS) - \gamma$ Coincidence Counting

- β & γ emissions from RI \rightarrow coincidence counting
- Relation among observed counting rate & radioactivity

$$rac{N_eta N_\gamma}{N_c} = N_0 [1 + k(rac{1-\epsilon_eta}{\epsilon_eta})] = N_0 [1 + k(rac{N_\gamma}{N_c} - 1)]$$

 $\textit{N}_{\textit{\beta},\gamma,\textit{c}}:$ Observed counting rate of $\beta/\gamma/\beta\text{-}\gamma$ coincidence events

N₀: Radioactivity of RI

 ϵ_{β} : β detection efficiency

k: constant

• Efficiency-extrapolation ($\epsilon_{\beta} \rightarrow 1$): obtaining radioactivity of RI

• $4\pi\beta - \gamma$ coincidence counter

$4\pi\beta(LS) - \gamma$ Coincidence System

Diagram

• $4\pi\beta - \gamma$ coincidence counter

Jinyu Kim (KAERI)

Components of $4\pi\beta(LS) - \gamma$ Coincidence Counter

- Vial: containg LS & radioisotope, β detection
- Nal crystal: 3-inch, γ detection •
- SiPM: scintillation light detection

- SiPM control board: power supply, thermometer
- Frame: 3-D printing, plastic

Nal crystal

SiPM control board

Jinvu Kim (KAERI)

Frame

5/14

Detecting Materials: β

- Liquid scintillator
- Product name: Ultima Gold F
- Production: Perkin Elmer
- Main material: Diisopropylnaphthalene

- Light output: $\sim 10,000 \text{ photons/MeV}$
- Flash point: 140 °C
- Density: 0.96 g/cm^3
- Diisopropylnaphthalene (DIN)

Detecting Materials: γ

- Nal crystal
- Production: Epic-Crystal
- Growth technique: Bridgman
- Shape: cylindrical

- Light output: ${\sim}40,000$ photons/MeV
- Diameter: 3"
- Height: 8 cm
- Density: 3.67 g/cm³

SiPM & Control Board

- SiPM: Hamamatsu S13
- Operating voltage: 52-60 V
- Operating temperature: -20 to 60 $^\circ\mathrm{C}$
- Gain: 1-5 $\times 10^{6}$ @25 $^{\circ}\mathrm{C}$
- Spectral response range: 320-900 nm
- Photon detection efficiency: 40% @450 nm

- SiPM array & control board
- Production: Notice Korea
- 3×3 array: for vial(LS),
- 7×7 array: for Nal,
- Control board: 4 channels,
- Connection: TCP/IP

Frame Production

- 3-D printing
- Material: plastic
- Design: CAD
- Upper + lower
- Production time: 60 hr

Counter Assembly

DAQ System

- FADC500 (Notice Korea)
- 4 channels

Pulse

.

- 500 MHz sampling rate
- Dynamic range: 12 bit / 2.5 V
- Recording length: 0.1-32 μs
- Maximum trigger rate: ~40 kHz

Saturation

Test Run of the System

- Testing $4\pi\beta(LS) \gamma$ coincidence counter using ⁶⁰Co
- ⁶⁰Co source

Experimental setup

Decay scheme for ⁶⁰Co

β spectrum

γ spectra

Radioactivity Measurement Test

- $N_{\beta}N_{\gamma}/N_c$ for various ϵ_{β} values \rightarrow efficiency-extrapolation \rightarrow radioactivity of RI
- Changing threshold for $\beta \rightarrow$ various ϵ_{β} values
- Fitting function: equation in page 3
- Error bar: statistical uncertainty only

• Efficiency-extrapolation

- Development of $4\pi\beta(LS) \gamma$ coincidence system for radioactivity measurement
- Producing/selecting each part of the system → assembly
- Trying radioactivity measurement using ⁶⁰Co
- Detailed studies are ongoing
 - stability check
 - systematic uncertainties
- Production of $^{177}Lu \rightarrow$ radioactivity measurement will be done.