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1. Introduction 

 

High flux neutrons are demanded to research the 

fusion material, medical fields and other applications 

[1]. With the neutron beam, irradiation tests of fusion 

reactor materials or the study of transmutation of long-

lived radioactive nuclear waste or non-destructive 

testing are possible [2]. The efforts to increase the 

neutron flux are reached to utilize the accelerator-based 

system [3-7]. The most used in this system is proton- 

based accelerator [8]. As an alternative to generate the 

high flux neutrons, a lithium ion colliding to deuterium 

target which is the inverse kinematic reaction is 

suggested in this paper. Utilizing the existing ion 

irradiation facility in KAERI, the neutrons of 14 MeV 

could be generated in forward direction.  

KAHIF (Korea Atomic Energy Research Institute 

Heavy Ion Irradiation Facility) is providing He and Ar 

ion beams for research fusion material since it is 

transferred from KEK [9-10]. This ion irradiation 

facility could transport the lithium ion up to 1.09 

MeV/u with split-coaxial radio frequency quadrupole 

(SC-RFQ) and interdigital H-mode drift tube linac (IH-

DTL). In order to generate forward directed neutron 

beam, additional Li ion source, deuterium target, and 

extra shielding around the target area will be required.  

 

2. Neutron Source 

 

Common reactions to generate the neutron source are 

of irradiating proton or deuterium beam to deuterium or 

tritium or Li target. The representative reactions 

producing neutrons are listed in Table I [11]. 

Considering an accelerator-driven neutron source, the 

total neutron yield from the 7Li(d,n)8Be reaction by 2.0 

MeV deuterium beam is about 109 n/s/uA. Assuming 

5 % utilization of the beam, the expected neutron yield 

is about 1010 n/s [11]. The deuterium beam with 2.0 

MeV is possible to irradiate to the Li target, using 

KAHIF facility. However, during the accelerating 

deuterium beams, the linac components will be 

contaminated by neutron and tritium.  

 
Table I: Representative Neutron Generation Reactions [11] 

Reaction 
Threshold 

Energy [MeV] 

Product Energy 

(n) [MeV]  

2H(d,n)3He - 2.45 

3H(d,n)4He - 14.05 
7Li(p,n)7Be 1.880 0.03 

1H(7Li,n)7Be 13.094 1.44 

7Li(d,n)8Be - 13.35 

 

The most well-known reactions used in accelerator-

driven neutron source are 7Li(p,n)7Be and 9Be(p,n)9B. 

However, the mass of the proton is much lighter than 

of the target nucleus, the generated neutrons are 

emitted in all directions. To solve limitation of the 

conventional accelerator-driven neutron sources, an 

inverse kinematic reaction has been proposed [12-14]. 

As the heavier mass of deuterium target, lithium ion 

could focus the generated neutrons forward to 

irradiated direction. This forward focused neutron 

beam includes the more higher flux neutron than 

isotopic neutron source.  

To overcome the contamination of the linac and the 

focused neutron source, we suggest a Li ion beam to 

collide deuterium target for producing neutrons. Based 

on the simulation results by Gean4 Code, a 7 MeV 

energy Li ion beam colling to deuterium target could 

produce 14 MeV neutrons [14]. Due to the heavier 

mass of Li, the produced neutron flux is focused to 

forward direction. Also, tritium is not produced during 

the reaction, the beam line could cleanly operate. The 

design specifications for generating 14 MeV neutron 

are summarized in Table II [14]. 

 
Table III: Design Requirements for 14 MeV Neutron 

Parameter Value Unit  

Acceleration ion  7Li3+ - 

Beam energy 7 MeV 

Beam current >1 mA 

# of neutron >1010 
n/s 

(average) 

 

3. Plans for CANS 

 

3.1. KAHIF 

 

As an ion irradiation facility, KAHIF is located in 

KAERI. He+ and Ar10+ ion beams are available for 

investigating the properties of the nuclear fusion 

material. The demonstration material test for the 

displacement per atom (DPA) due to neutron is 

performed using this ion irradiation facility recently. 

The ion implantation or ion beam analysis are also 

possible with the stable operation. 
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Fig 1. Schematic layout of KAHIF 

 

   Fig 1 shows the configuration of KAHIF beam line. 

The low energy beam transport section of the beam line 

includes 18 GHz ECR-IS, 90° bending magnet, Einzel 

lens, the quadrupole magnets and SC-RFQ. Once the 

ions are extracted from ECR-IS, the ions are accelerated 

up to 2.07 keV per nucleon before SC-RFQ. SC-RFQ 

which has 25.96 MHz resonance frequency is bunching, 

focusing and accelerating the ion beams up to 178 keV 

per nucleon. Through the 51.92 MHz rebuncher (RB), 

the ion beams are entered to IH-DTL which has the 

same resonance frequency as the rebuncher caviy. The 

ion beams are accelerated by four IH-DTL up to 1.09 

MeV/nucleon. With the full operation of KAHIF, the 

stable non-radioactive ion beams could be irradiated 

with 1.09 MeV/nucleon for various applications. 7Li3+ 

ion beam could achieve up to 7.63 MeV in KAHIF. 

 

 
Fig 2. Current service beam line section in KAHIF. The target 

chamber, the sample holder and the samples for irradiation of 

He ion beams are shown. The samples could be heated up to 

550 ℃ at the holder. Usually, the sample is mounted by 10 

mm x 10 mm x 1 mm size. The beam could be irradiated to 

four samples of this size by one time.   

 
The operation of KAHIF is currently available before 

the rebuncher cavity. Fig 2 shows the recent operation 

section, the target chamber, the sample holder and the 

samples.  For research the neutron damage on the metal 

sample, He+ ion beam with 22.0 uA (average) and Ar10+ 

ion beam with 15.0 uA (average) are irradiated. 

 

 
Fig 3. Modifying the beam line for Li ion source and 

deuterium target. Additional port for Li-IS is shown in the 

picture. The neutron shielding needs only around the target 

area. For x-ray shielding, 5 mm thickness of Pb wall is 

installed around the entire beam line. 

 

3.2. Li Ion Source 

 

In order to generate Li ion beams, the space for the 

additional Li-IS at the bending magnet is prepared (Fig 

3). The problem is what kind of the Li-IS could be 

suitable to install in current KAHIF beam line [15-17]. 

The beam reproducibility, beam emittance, beam 

uniformity, beam current, and possible vacuum 

condition, the requirements for Li-IS need to be 

established. Also, the life time of the Li-IS should be 

considered.   

As the Li-IS, the solid surface Li ion source [17] is 

the one of the possible option. By the thermionic 

emission from a lithium alumino-silicate surface, the 

Li+ beam current density, 1 mA/cm2, could be achieved.  

 

3.3. Deuterium Target 

 

The deuterium-loaded titanium target for D-D 

neutron source has been developed [18]. The SLIM 

calculation results of incident 7 MeV 7Li beam shows 

that the depth of titanium needs 10.1 um [14]. The 

deuterium target could be made by coating 20 um of 

titanium at the surface of water-cooling Cu plate. When 

the beam is switched off, the target could be 

regenerated by the deuterium gas with heating of the 

plate. 

 

3.4. Shielding 

 

Concerning the radiation safety license of the facility, 

the 5 mm thickness of Pb wall has been installed around 

the beam line (Fig 3). And the 10 mm thickness of Pb 

wall surrounds the ECR-IS section for x-ray shielding. 

The advantage of Li ion irradiation is considering only 

the neutron shield around the target area. This saves lots 

of the money for shielding entire beam line when using 

deuterium beam.  

The neutron shielding design is required the available 

space at the target area. The calculation of the shielding 

material will be conducted by MCNP [19]. 

 
4. Conclusions 

 

Utilizing of the operating ion irradiation facility in 

KAERI, the compact accelerator-based neutron source 

is proposed to generate 14 MeV neutrons in this paper.  

The ion irradiation facility could accelerate ion beams 

from 0.178 MeV/u up to 1.06 MeV/u. A 7 MeV Li 

beam colliding deuterium target could produce the total 

neutron yield about 109 n/s/uA. Li-IS, deuterium target, 

and neutron shielding are need to be optimized to 

requirements of the reaction. The specifications of these 

considerations will be studied. This research could be 

extended to the development of portable or movable 

high neutron source. 
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