

Cycle analysis and economic evaluation of heat pipe cooled micro-reactor and comparison with other power generation systems

Su Won Lee, Yongnam Lee, Namhyeong Kim, HangJin Jo*

Division of Advanced Nuclear Engineering (DANE)

POSTECH

May 19, 2023

Contents	1
I. Introduction	
II. Research trend & Research objective	
III. Research progress	
IV. Results & Analysis	
V. Conclusion & Future work	

1. Introduction

• What is the SMR and micro-reactor?

 		<smr></smr>	[1
	Large-scale NPP	SMR	Micro-reactor
Power generation	300~1000MW _e	30~300MW _e	~30MW _e
Volume	Large (100-1000)	Medium (10-100)	Small (1)
Safety	Low	Medium	High
Construction cost and time	High	Medium	Low
Application	Power generation system	Power generation system	Power generation system, aircraft carrier, space reactor, and submarine, hydrogen production, and mining

Characteristics of micro-reactor

- Low construction cost and time (Modularization)
- Ability to be "grid independent" (Micro-grid)
- Low heat transfer rate & High inherent safety
- Market size: 30~40 trillion won^[2]

THE System Lab[1] https://www.iaea.orgThermal Hydraulics & Energy System Lab[2] David, Global market analysis of microreactors, DOE (2021)

1. Introduction

Heat pipe cooled micro-reactor

- Primary system and PCS: heat pipe and stirling cycle ٠
- Advantages: strong negative feedback, long life, and robustness •
- Cost and volume are lower than typical NPP •

(primary cooling system does not require)

Applications of heat pipe cooled micro-reactors

PCS: Power Conversion System

Stirling Technology

KRUSTY: Kilo-power Reactor Using

3

- Space reactors: KRUSTY
- Micro-grid power generation systems: MoveluX, Aurora

(buried type), Evinci (transportable type)

[3] Small nuclear power reactors, World nuclear association (2021),

[4] Advances in Small Modular Reactor Technology Developments, IAEA advanced reactors information system (2020)

2. Research trend & Research objective

Research trend of heat pipe cooled micro-reactor

Heat pipe cooled micro-reactor^[5]

- Most researches for heat pipe cooled micro-reactor were studies of primary system such as analysis of reactivity, heat pipe, thermal stress
- The reactor type was used as a **space reactor** and was mostly used as a stirling engine
- Research on PCS detailed aimed at generating electricity design is insufficient

[5] Small nuclear power reactors, World nuclear association (2021), https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-

Thermal Hydraulics & Energy System Lab reactors/small-nuclear-power-reactors.aspx

PCS: Power Conversion System

2. Research trend & Research objective

Research objective of heat pipe cooled micro-reactor

- Most studies have been conducted on the stirring cycle of space reactors
- Research on the PCS design is needed to develop the power

generation system to form a micro-grid

THE System Lab

[6] Kim, M. S., Ahn, Y., & Lee, J. I. (2015). Studies of S-CO2 Power Plant Pipe Selecting Design and General layout for Small Modular Sodium-cooled Thermal Hydraulics & Energy System Lab Fast Reactor. In International Congress on Advances in Nuclear Power Plants.

Objective and scope of the research on heat pipe cooled micro-reactor

Detailed design and economic evaluation of heat pipe

3. Research progress

• **Determine of power conversion system and components**

[8,9] 300 PCHE 20 Theat pipe cooled Shell & Tube Hydraulic diameter dn (mm) microreactor condition Lessure [bar] FPHE 10 PCHE FPHE 5 **BPHE BPHE** Shell & tube 0.5 -200 0 200 400 600 800 100 1000 Temperature [°C] Area density (m²/m³)

<PCHE operating condition and area density>

Cycle layout and working fluid

- Working fluid: Supercritical CO₂
- Cycle type: Re-compressor Brayton cycle
 (High cycle efficiency and compactness)^[7]
 - PCHE
 - High temperature and pressure conditions
 - High heat transfer performance
 - and compactness
 - High pressure drop

TIT: Turbine Inlet Temperature PCHE: Printed Circuit Heat Exchanger FPHE: Flat Plate Heat Exchanger BPHE: Brazed Plate Heat Exchanger

6

[10]

<Turbomachinery types>

Radial single-stage turbomachinery

Power generation of heat pipe cooled micro-

reactor: $1 - 5 M W_e$

- Turbine type: radial single-stage turbomachinery
- Speed and size: 30000~ RPM, 5~14cm

[7] Park J.H, Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors, Energy (2018) [8] Thonon. B, Compact heat exchangers technologies for the HTRs recuperator application (2014)

[9] Xiaoqin, Review on mechanical design of printed circuit heat exchangers, International conference on nuclear engineering (2017)

THE System Lab Thermal Hydraulics & Energy System Lab

^{ab} [10] Yaping Liu, Supercritical co2 Brayton cycle: A-state-of-the-art review, Energy (2019)

3. Research progress

Development of PCHE and radial single-stage turbomachinery codes

<PCHE code flowchart>

Heat exchanger (PCHE) code

- Method: Kern's method (LMTD and heat balance)^[11] ٠
- Discretization considering change in properties ($\Delta h < 0.3 \text{kJ/kg}$) ٠
- Results: temperature and pressure distribution, area and volume ٠

LMTD: Log Mean Temperature Difference

 $N_s = \frac{w\sqrt{Q}}{(H_{ad}g)^{3/4}}$ $D_s = \frac{d(H_{ad}g)^{1/4}}{\sqrt{Q}}$

Ns-Ds diagram^[12]

(Diagram developed through experiment of radial single-stage type)

Results: Pressure ratio, diameter and angular velocity of

turbomachinery

[11] Lee, Evaluation of thermal-hydraulic performance and economics of PCHE for recuperators of Sodium-cooled Fast Reactors (SFRs) using CO2 and N2 as working fluids THE System Lab [12] Yaping Liu, Supercritical co2 Brayton cycle: A-state-of-the-art review, Energy (2019) Thermal Hydraulics & Energy System Lab

TIT: Turbine Inlet Temperature

3. Research progress

• Development of cycle analysis code

<Turbomachinery code flowchart>

heat exchangers, TIT

- **Result**: temperature and pressure at each point, size of turbine, compressor, and HX
- Maximum difference with reference case: about 1.38 %

8

[13]

Effectiveness of HX

 $C_{c}(T_{c,o}-T_{c,i})$

 $\equiv 3$

Turbine inlet P

Pressure ratio

PR =

Thermal Hydraulics & Energy System Lab

THE System Lab

Optimal operating conditions according to the TIT

HREC: High temperature recuperator LREC: Low temperature recuperator **TIT: Turbine Inlet Temperature**

10

- Primary system was designed by INL (Idaho National Lab)^[14]
- PCS was designed by POSTECH
- Container box: 2.591m / 6.096m / 2.438m (W/L/H)

(Limitation: 40ton)

THE System Lab Thermal Hydraulics & Energy System Lab ID (United States).

[14] Abou Jaoude, A., et al. (2021). An Economics-by-Design Approach Applied to a Heat Pipe Microreactor Concept, Idaho National Lab.(INL), Idaho Falls,

Economic evaluation of heat pipe cooled micro-reactor

decommissioning

• LCOE = <u>Sum of costs over life time</u> <u>Sum of electrical energy produced over life time</u>

$$= \frac{Capital \cos t + \sum_{i=1}^{y} (0\&M \cos t + Fuel \cos t)/(1+r)^{y}}{\sum_{i=1}^{y} (Electricity energy)/(1+r)^{y}}$$

(r: interest rate / y:plant life time)

Primary system

• The cost is calculated normalized cost proposed by INL

Normalized cost (\$/kW)
2,334
2,387
650
1,385
7
1,045
754
1,912
6% of capital cost

Secondary system

- Turbine : $C_t = 479.34 \cdot m \cdot [1/(0.93 \eta_t)] \cdot \ln(PR) \cdot [1 + \exp(0.036 \cdot T_i 54.4)]$
- Compressor: Cc=71.1•m• [1/(0.92-ηc)]•(PR)•ln(PR)
 (m: mass flow rate, T: temperature, η:efficiency, PR: pressure ratio)
- Heat exchanger (PCHE): $C_{PCHE} = C_{M} \cdot (V \cdot \rho)$

(C_M : cost per unit mass, V: volume of PCHE, ρ : density of PCHE)

I&C: Instrumentation & Control O&M: Operation & Management LCOE: Levelized Cost Of Electricty

[15]

12

Economic evaluation of power generation systems using various fuels

[14]

Economic evaluation according to the various heat sources

- Average LCOE of various countries
- Discount rate: 5% / Carbon tax: 30 USD/ton
- Carbon emission: Gas, coal, lignite, CHP (Carbon tax)
- Nuclear < Gas, Geothermal, Lignite, Microreactor < Fuel cell, Bio
- Capital cost: Lignite, Gas, Coal < CHP < Nuclear < Hydro, Solar, Wind < Fuel cell
- Carbon tax: Hydro, Solar, Wind < Nuclear < Fuel cell < Lignite, Coal, Gas

Source	Bio	СНР	Coal	Fuel cell
LCOE [USD/MWh]	124	92	94	187
Source	Gas	Geothermal	Hydro	Lignite
LCOE [USD/MWh]	78	82	80	90
Source	Nuclear	Solar	Wind	Micro-reactor
LCOE [USD/MWh]	42	85	83	83

Thermal Hydraulics & Energy System Lab

• Comparison of micro-reactor with large nuclear power plant considering T&D electricity losses

Economic evaluation according to the various heat sources

- LCOE: South Korea (45USD/MWh), Hungary (78USD/MWh), Micro-reactor (83USD/MWh)
- Construction cost was calculated based on the $100 MW_e$
- Large NPP occurs T&D electricity losses
- Construction difference = Cost due to T&D losses* **Recovery year**
- Recovery year: Hungary (4.3y), South Korea (More than 60y)

13

5. Conclusion & Future work

• Conclusion

- Cycle analysis code including heat exchanger and turbomachinery sub-codes was developed
- Optimal cycle condition was derived based on the maximum cycle efficiency according to the design parameters
- A power generation system using micro-reactor was compared with the existing fuel system using various fuels
- Economic evaluation was conducted by comparing large nuclear power plant considering T&D losses

• Future work

- Heat pipe analysis will be performed to design IHX integrated with heat pipe
- Transient simulation will be conducted to understand the operation of the designed micro-reactor

Thanks for your attention

THE System Lab Thermal Hydraulics & Energy System Lab