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1. Introduction 

 

The need to improve source term estimation 

technology in the event of nuclear power plant accident 

has been steadily emphasized. An innovative source 

term estimation method using deep learning was 

developed and introduced in the previous studies [1, 2]. 

In the initial stage, deep learning modeling strategy [3] 

was established and learning data base (DB) [4, 5] was 

constructed by a large number of calculations using 

MAAP5 [6] severe accident analysis code. In order to 

investigate feasibility, scenarios representing low- and 

high-pressure conditions of reactor coolant system 

(RCS) of OPR 1000 have been selected. Medium-break 

loss of coolant accident (MLOCA) scenario, which 

represents low-pressure condition, consists of 9 sub-

scenarios by plant damage state event tree (PDS ET). In 

the same way, total loss of component cooling water 

(TLOCCW) scenario, which represents high-pressure 

condition, is comprised of 3 sub-scenarios. 24 safety 

parameters of nuclear power plant that are highly related 

with accident source term were selected as learning 

input by expert judgement: 

 

- PRESSURIZER PRESS (WR) 

- PRESSURIZER LEVEL CH X 

- REACTOR VESSEL WATER LEVEL  

- AVG TEMP OF HOT & COLD LEGS 

- COLD LEG 1A MASS FLOW (1) 

- COLD LEG 1B MASS FLOW (2) 

- COLD LEG 2A MASS FLOW (3) 

- COLD LEG 2B MASS FLOW (4) 

- SG 1 PRESSURE CH A 

- SG 2 PRESSURE CH A 

- SG 1 LEVEL (WR) 

- SG 2 LEVEL (WR) 

- MAX REP CORE EXIT TEMP 

- HIGHEST CET TEMP - CHANNEL A 

- SAFETY INJ TANK PRESS (NR) 

- HPSI PUMP FLOW 

- LPSI PUMP DSCH HEADER FLOW 

- CONTAINMENT SPRAY FLOW 

- REFUELING WATER TANK LEVEL 

- CONTAINMENT PRESS CH A (NR) 

- CNMT AVERAGE TEMP 

- CNMT WATER LEVEL CH A 

- CNMT RECIRC SUMP LEVEL CH A 

- H2 CONCENT. LEVEL(CH.A) 

 

Release fractions of three major elements (Xe, Cs, 

and I) were set as deep learning output [2]. 

300 MAAP calculations for each scenario 

considering uncertainties relevant with break size, 

operator action time, and code itself were conducted 

and constructed the learning DB [4, 5]. 

A global deep learning model which can be used to 

diagnose severe accident [7, 8] and estimate source term 

[1, 2] was developed. Diagnosis of severe accident 

means classification of 12 sub-scenarios. Developed 

deep learning model is employing Transformer encoder 

[9, 10], fully connected layer, and AdamP optimizer [11, 

12] as depicted in Fig. 1. It has been confirmed that the 

classification accuracy of the model is above 95% when 

20,000-sec (about 5.56 hr) data after the accident 

initiation is obtained from a nuclear power plant. 99% 

classification accuracy is guaranteed when 30,000-sec 

(about 8.33 hr) data is received. And accuracy was 

verified once more by conducting blind test [7, 8]. 

 

 
Fig. 1. Structure of the Deep Learning Model for source term 

estimation 

 

The deep learning model shows decent source term 

prediction results for most 12 sub-scenarios. Example 

results of source term prediction for cesium, when 

30,000-sec (about 8.33 hr) NPP data is received, are 

presented in Fig. 2 [1, 2]. Similar to the severe accident 

diagnosis, it is necessary to verify the results derived 

from the deep learning model for the purpose of source 

term estimation. Verification of the deep learning model 

to estimate accident source term was carried out and 

introduced in this study. 
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Y-axis: Normalized release fraction to maximum release fraction / X-axis: 72 hours expressed as 200 time steps 

Fig. 2. Example Results of Source Term prediction for Cesium: ML-05 Scenario (Left) and ML-09 Scenario (Right) [1, 2] 

 

 

2. Methods and Results 

 

In order to verify the developed deep learning model, 

DB comprising 100 MAAP calculations for each sub-

scenario was established separately [2]. For the 

verification DB, sampling to develop MAAP input 

considers only the uncertainties derived from the code. 

The uncertainties related with break size and operator 

action time were excluded since they incur wide band of 

results. Those uncertainties are considered only to 

establish learning and testing DB when the deep 

learning model was developed. In other words, 

verification DB shows narrower band than learning and 

testing DB [4, 5]. Therefore, if predicted source term 

exists in the band of verification DB, developed deep 

learning model can be evaluated as estimating accident 

source terms appropriately. 

Fig. 3 and Fig. 4 show the examples of the 

verification results for several sub-scenarios. Gray line 

shows 100 uncertainty analysis results and their band. 

Blue and red line mean true value and predicted value, 

respectively. As described in the figures, it can be 

confirmed that most predicted values locate in the 

uncertainty band, though not every line precisely follows 

real value. 

 

3. Conclusion 

 

In order to overcome the limitation of existing 

methods and improve the accuracy and speed of severe 

accident diagnosis and source term estimation, an 

approach employing deep learning has been developed. 

Not only development of an approach but also 

verification of the approach is very important and 

essential. In the previous study [7, 8] verification of 

severe accident diagnosis using developed deep learning 

model has been performed. In this study, verification of 

source term estimation using the deep learning model 

was conducted and appropriateness of using deep 

learning model was evaluated. It was confirmed that the 

source term prediction result using developed deep 

learning model exist in the uncertainty band for most 

scenarios considered in this study. 

 

4. Limitations and Further Work 

 

Only two representative scenarios that are MLOCA 

and TLOCCW were considered in this study, in order to 

confirm the feasibility of the approach. A framework 

and approach adopting deep learning has been 

developed and verified for representative scenarios in 

the previous studies. It is expected to be extended to all 

initiating event of OPR100 and other reactor types in 

subsequent studies. 

In this study, input data length received from a 

nuclear power plant was fixed at 30,000 seconds. It is 

planned to develop a adaptive model which improves 

the accuracy as the data reception time increases. 

It is necessary to check the feasibility of installing the 

approach to AtomCARE [13] as an option of source 

term estimation system (STES)  
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Fig. 3. Examples of the verification results for MLOCA scenario 

 

 

  

Fig. 4. Examples of the verification results for TLOCCW scenario 
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