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1. Introduction 

 
Since the Fukushima-Daiichi accident, it has been 

recognized that beyond-design-basis-accidents (BDBAs) 

need more attention. BDBA is defined as an accident that 

has consequences beyond the design limit of a nuclear 

power plant (NPP). If the BDBA progresses until the 

core is damaged or melted, it is called a ‘severe accident’.  

Severe accidents are non-linear and chaotic in nature, 

making it more challenging to predict their progression. 

The International Atomic Energy Agency (IAEA) 

recommends that the prediction and assessment of severe 

accidents be performed by a combination of 

Deterministic Safety Assessment (DSA) and 

Probabilistic Safety Assessment (PSA), as it provides 

insights into the progression of severe accidents and 

containment performance [1]. However, this method 

requires big computational resources and relies on highly 

conservative assumptions of severe accident scenarios 

due to large uncertainties. Hence, there is a need to 

develop a new approach that requires less computational 

resources and can incorporate uncertainties more easily. 

From this background, an artificial neural network-

based method is developed that predicts the progression 

of a severe accident in an accelerated manner. Two 

machine learning techniques are utilized to predict the 

progression of severe accident scenarios that can be 

generated by altering the total loss of component cooling 

water (TLOCCW) scenario. First, supervised learning is 

used to predict seven important thermal-hydraulic (TH) 

variables during a 72-hr accident scenario [2]. This is 

presented in the Part 1 companion paper. Using this 

supervised learning model as a surrogate model, a 

reinforcement learning (RL) that predicts an accident 

scenario that induces the most severe accident scenario 

has been developed [3]. That is, the RL agent is trained 

to choose a component failure time that accelerates the 

reactor pressure vessel’s (RPV) failure. This is presented 

in the Part 2 companion paper. 

Three surrogate models have been developed, and the 

performances of the RL agent will be investigated when 

three different surrogate models are coupled to the RL 

environment. The main goal of this study is to elucidate 

the effect of the performance of a surrogate model on the 

performance of the RL agent. The detailed methodology 

will be discussed in the following sections. 

 

2. Methodology 

 

Fig. 1 summarizes the process of developing an RL 

that predicts the component failure time that accelerates 

the progression of an accident. The details of each 

process will be discussed in the subsections. 

 

 
Fig. 1. Process of developing a reinforcement learning that 

can generate accident scenario with the most severe 

consequence. 
 

2.1 Selection of Accident Scenario 

 

Among various severe accident scenarios, the Total 

Loss of Component Cooling Water (TLOCCW) accident 

has been selected to demonstrate the performance of the 

proposed methodology. As severe accidents are triggered 

by multiple failures of components, the list of safety 

components that could cause a LOCCW needs to be 

identified. In this study, (1) Reactor Coolant Pump 

(RCP), (2) Heat Exchanger (HX), (3) High-Pressure 

Injection (HPI) pump, (4) Low-Pressure Injection (LPI) 

pump, (5) Containment Spray System (CSS) pump, (6) 

Motor-driven Auxiliary Feedwater (MDAFW) pump, 

and (7) Charging Pump (CHP) have been chosen. 

Assuming that these seven components can fail with a 

uniform probability of 1/2 within 72 hours accident 

progression time, 10,679 accident scenarios were 

generated.  

Using these scenarios, Modular Accident Analysis 

Program (MAAP) 5.03 was used to simulate the 

progression of each accident scenario for 72 hours. It 

predicts the change in the selected TH variables (e.g., 

primary system pressure, cold leg temperature, core exit 

temperature). These outcomes are then used to train the 

surrogate models. 

 

2.2 Surrogate Models 
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A surrogate model is a special case of supervised 

machine learning to predict an outcome using a data-

driven, bottom-up approach. It simulates the behavior of 

a complex system in a time-efficient manner. The 

surrogate model is coupled to the RL environment to 

predict the TH variables of an NPP at the next time step.  

It is known that the convolutional neural network 

(CNN) and long-term short memory (LSTM) models are 

specialized in predicting time-series variables. As the TH 

variables of an NPP during an accident scenario are time-

series variables, these two models are considered 

appropriate for constructing the surrogate model. Thus, 

three neural network models have been developed: 

convolutional neural network (CNN), long short-term 

memory (LSTM) network, and a combined network 

composed of one CNN layer and two LSTM layers. The 

schematic of the combined network is described in Fig. 

2.  

The accident datasets generated from the MAAP code 

are fed into each surrogate model. Each dataset, or 

episode, consists of 73 time steps – 0 to 72 hours in 1-

hour intervals. The surrogate models are trained to 

predict the TH variables at the next time step (𝑡 + 1), 

using the TH variables and mitigation strategies at the 

three previous time steps (𝑡 − 2, 𝑡 − 1, 𝑡).  

 

 
Fig. 2. Artificial neural network structure of the combined 

network model. It consists of a one-dimensional CNN layer 

and two LSTM layers [4]. 
 

The trained surrogate models interact with the RL 

environment to provide responses of the system to the 

RL agent after an action is taken by RL. Most 

importantly, it is expected that the performance of the RL 

model highly depends on the accuracy of the surrogate 

model. Thus, the accuracy of each surrogate model is 

checked and discussed together with the RL’s 

performance. 

 

2.3 Reinforcement Learning 

 

In this study, an RL model is trained to choose the 

failure time of seven safety important components that 

maximize the damage to the NPP (i.e. early failure of 

RPV). This approach could be meaningful to developing 

prevention or mitigation measures in response to the 

worst-case scenario.  

The RL is optimized by clipped proximal policy 

optimization (PPO). This method is advantageous 

because rapid convergence is possible using a clip 

function. When the RL agent takes a certain action (in 

this case, choosing which component will fail or not), the 

environment returns a set of reward and states to the 

agent. The reward system is described in Eq. (1). If the 

agent’s action increases the pressure of the primary 

system (𝑃1), a reward is given proportional to the amount 

of increase in pressure,  ∆𝑃1 , and the remaining time, 

72 − 𝑡. If not, there is no reward. This reward system 

was established based on the logic that over-

pressurization of the primary system may cause a breach 

in the RPV. The RL agent is trained to pick an action that 

maximizes the reward, meaning that the agent will select 

the component failure time that increases 𝑃1. It is noted 

that all variables handled in the environment have been 

normalized to have a value between unity and zero, thus 

the reward is non-dimensional. 

 

𝑟𝑒𝑤𝑎𝑟𝑑 = {
∆𝑃1 ∙ (72 − 𝑡), ∆𝑃1 ≥ 0

0, ∆𝑃1 < 0
   (1) 

 

The RL environment is coupled to three different 

surrogate models that were discussed in the previous 

subsection. All three RL agents are trained by datasets 

from 1,000 randomly chosen episodes (i.e. scenario). As 

one episode ends, the state and reward are reset. After the 

training is done, the RL agents are tested 1,000 times to 

select the component failure time. From the test results, 

the most frequently chosen component failure time sets 

are extracted. Based on the component failure time sets, 

the MAAP 5.03 code is used to validate the prediction 

from the surrogate model regarding the time of RPV 

failure. This approach is expected to provide insight for 

how each safety component failure time affects the RPV 

failure time. 

 

3. Results and Discussion 

 

3.1 Performance of Surrogate Models 

 

Table I summarizes the accuracy of the three surrogate 

models. The mean absolute error (MAE) is used as a 

performance indicator, defined in Eq. (2). MAE refers to 

the mean absolute difference between the TH variables 

predicted by each surrogate model (𝑦𝑝𝑟𝑒𝑑,𝑖 ) and those 

predicted by MAAP 5.03 code (𝑦𝑀𝐴𝐴𝑃,𝑖). The MAEs of 

both valid datasets and test datasets are organized in 

Table I. It was observed that the most satisfying 

performance is demonstrated with the combined network 

model and the least performing model is the LSTM 

model.  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑀𝐴𝐴𝑃,𝑖|

𝑛

𝑖=1

     (2) 

 

Table I: Mean absolute errors of each surrogate model 
 

CNN LSTM Combined 
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Valid 0.01013 0.01425 0.00822 

Test 0.01029 0.01444 0.00843 

 

3.2 Performance of RL Agents  

 

The trained RL agents were tested 1,000 times to 

select the component failure times. Fig. 3 summarizes the 

most frequently chosen failure times of the seven 

components selected by three RL agents. It is observed 

that the LSTM-based RL agent tends to select a 

significantly delayed failure time for HPI pump 

compared to other cases.  

 

 
Fig. 3. Component failure times that were the most frequently 

chosen by three different RL agents. 
 

Then, MAAP 5.03 code was used to validate the RPV 

failure time from the surrogate model prediction based 

on these component failure time sets (i.e., scenario). In 

Fig. 4, the RPV failure times and the performance of each 

surrogate model (MAE values in Table I) are plotted 

together. The component failure time sets chosen by 

CNN, LSTM, and the combined network model have 

predicted RPV failure times of 19.23, 38.06, and 18.36 

hours, respectively. Although the component failure 

times selected by the CNN-based and CNN-LSTM 

combined network-based RL agents differed from each 

other, the RPV failure times validated by MAAP 5.03 

code were comparable. It is clearly shown in Fig. 3 that 

the failure times of individual safety components in the 

two models are different. However, the times when all 

the safety components responsible for cooling the reactor 

core (e.g., HPI, LPI, MDAFW) fail appeared to be 

similar. This explains the similar RPV failure times 

between the CNN-based and the combined network-

based RL models. 

Also, the RPV failure time is especially delayed in the 

LSTM model, possibly because the LSTM-based RL 

agent tends to choose delayed HPI pump failure time. 

The reason behind this is due to the nature of the 

LSTM model. Although LSTM is known to be 

specialized in sequence modeling, the vanishing gradient 

problem is deeply rooted in it. Since the LSTM performs 

consecutive matrix multiplications, the network cannot 

be trained sufficiently if the amount of update or gradient 

is small [5]. As the LSTM surrogate returns incorrect 

states to the RL environment, the agent receives 

erroneous rewards, thus hindering the learning process. 

Judging from the performance results, it seems that the 

performance of RL is improved by combining the CNN 

layer with the LSTM layer. 

Most importantly, it was observed that if the MAE of 

the surrogate model is smaller, the RL agent develops a 

scenario that can produce earlier RPV failure 

consequences. Thus, it is concluded that for the RL agent 

to be trained in the direction of the original intention, the 

surrogate model interacting with the RL should have 

high performance. 

 
Fig. 4. RPV failure time and MAE performance for tested SL 

models. 
 

3.3 Uncertainty of RL models  

 

Finally, the distribution of the component failure times 

selected by the RL agent is analyzed. The standard 

deviation of the component failure time is evaluated, as 

it is an indirect measure of the uncertainty of each RL 

model. For example, if the variance of the failure time of 

a certain component is large, it implies that the RL does 

not recognize that the corresponding component failure 

time significantly contributes to advancing the RPV 

failure time. On the other hand, if a component plays a 

significant role in accelerating the RPV failure time, the 

component failure time selected by the RL will be 

concentrated in a specific time period. Furthermore, if 

the variance of the failure times of the safety components 

with a strong correlation to RPV failure time (e.g., HPI, 

LPI, MDAFW) is small, it means that the RL model is 

well-trained as originally intended.  

Fig. 5 shows the standard deviation of the distribution 

of component failure times selected by the three RL 

agents. The models that showed a small variance in 

failure time of HPI, LPI, and MDAFW are the CNN-

based and the combined network-based RL models. On 

the contrary, in the case of the LSTM-based RL model, 

the standard deviations were larger on average compared 

to the other models. That is, it indirectly implies that the 

uncertainty of the RL model based on LSTM is large and, 

not only do the CNN-based and the combined network-

based RL models perform better but also they have 

smaller uncertainties for making decision to minimize 

the RPV failure time.  
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Fig. 5. Standard deviation of the component failure time 

distribution 
 

4. Conclusions and Further Works 

 

An artificial intelligence-based system was designed 

to predict severe accident scenarios in a pressurized 

water reactor (PWR). Using the MAAP 5.03 code, 

datasets used for surrogate model training were 

generated. The surrogate model was developed to predict 

the TH variables at the next time step in a 72-hour-long 

TLOCCW accident. Three surrogate models were 

developed, all of which are constructed with different 

types of layers: CNN, LSTM, and CNN+LSTM 

combined approach. Each surrogate model is connected 

to the RL environment and the overall performance was 

tested. The RL agent interacts with the surrogate model 

and is trained to select the reactor component failure time 

that can induce the RPV failure earliest.  

The main objective of this study is to investigate the 

effect of the performance of surrogate models on the 

performance of RL agents. As a result, it was confirmed 

that as the surrogate predicts the TH variables with better 

performance, the RL agent is more likely to take action 

that can induce RPV failure earlier.  

Based on this observation, further studies can be 

proposed from various perspectives. As the results of this 

study emphasize the performance of the surrogate model, 

the surrogate models can be further improved for 

predicting the TH variables.  

Also, a different RL reward system can be searched 

for. The reward system used in this study relies on a 

simple assumption that the increase in 𝑃1 will cause the 

RPV to fail. However, as RPV failure is a complex and 

non-linear phenomenon, a such simple reward design 

may not be sufficient to construct the reward system. 

Lastly, a more comprehensive systematic method to 

quantify various uncertainties associated with an RL 

model is required. These uncertainties are as follows: 

i. Uncertainties associated with MAAP code and 

input: The thermal-hydraulic variables predicted 

by the MAAP 5.03 code bear uncertainties, which 

stem from the uncertainties of the MAAP 

program and input. 

ii. Uncertainties associated with the surrogate model: 

One is the epistemic uncertainty, which roots in 

the lack of data. The other is related to the error 

of the constructed neural network, which can be 

quantified by the dynamic time warping between 

the training set and the predicted values. 

iii. Uncertainties associated with the RL model: The 

RL environment has been constructed with the 

surrogate model, meaning that the RL model 

essentially bears all the uncertainties that have 

been discussed above. In addition, there are 

aleatoric uncertainties embedded in the RL model. 

One intuitive measure of quantifying this 

uncertainty would be to calculate the variance of 

the learned distribution of the component failure 

times. 
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