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1. Introduction 

 
Severe accidents in nuclear power plants have the 

potential to cause catastrophic consequences, making it 

crucial to develop effective methods for predicting and 

mitigating these events. In traditional nuclear accident 

analysis, accident scenarios are created and analyzed 

based on the likelihood of failure of a particular 

component, the changes in thermal hydraulic variables 

inside a nuclear power plant that would be caused by the 

failure, and the opinions of experts. However, traditional 

methods have their limitations, and the complex nature 

of nuclear accidents requires a more comprehensive 

approach. This is where artificial intelligence (AI) comes 

in. 

The field of AI is rapidly advancing, and its potential 

for revolutionizing traditional methods of analysis and 

prediction cannot be overstated. In the context of nuclear 

accident analysis, AI can be used to enhance our 

understanding of complex systems and to identify 

patterns and anomalies that would be difficult, if not 

impossible, for human experts to detect. By applying 

machine learning algorithms to vast amounts of data, 

new insights can be gained that were previously hidden 

or overlooked, allowing for more accurate and effective 

prediction of nuclear accidents. In this way, AI has the 

potential to expand our sight beyond the limitations of 

traditional methods and to help us develop more 

comprehensive and robust methods for mitigating the 

catastrophic consequences of nuclear accidents.  
In this study, reinforcement learning (RL), one of the 

AI techniques, is used. It is used to generate nuclear 

accident scenarios and analyze the results with MAAP, 

an existing safety analysis code. RL is a type of AI 

technique in which an agent learns how to make 

decisions in the environment to maximize reward signals. 

The agent receives feedback from the environment in the 

form of rewards or punishments, and uses this feedback 

to adjust its behavior over time [1].  

 These characteristics of RL lend themselves well to the 

process of optimizing behavior to achieve a specific goal. 

In the nuclear industry, research has been conducted on 

the use of RL to operate nuclear power plants. These 

studies have shown that RL agents manipulate the system 

for a given purpose, thus performing nuclear power plant 

operation [2], [3].  

 In this study, the RL agent generates accident scenarios 

by selecting components that may fail in a particular 

accident scenario without any special constraints. In 

order to generate more dangerous accident scenarios, two 

kinds of rewards are used. The accident scenarios 

generated with different rewards are finally analyzed by 

MAAP. In this process, the surrogate model mentioned 

in the Part 1 companion paper is used as an environment 

and provides information to the agent through high-

speed computation. 

 
2. Methods 

 

 As mentioned in the Part 1 companion paper, the 

surrogate model used in this study describes a TLOCCW 

event as a function of the parameters inside a nuclear 

power plant, whether components fail, and whether 

safety measures are implemented. In the process, the RL 

agent will determine when the six components will fail. 

The six components are: heat exchanger (HX), high 

pressure injection pump (HPI), low pressure injection 

pump (LPI), containment spray system (CSS), motor 

driven auxiliary feedwater (MDAFW), charging pump 

(CHP). The RL agent takes one agent-environment 

interaction and decides to either fail one component or 

take no action. This process is optimized through the 

proximal policy optimization (PPO) algorithm. 

 PPO is one of the RL methodologies and is considered a 

robust RL algorithm when dealing with high-

dimensional state and action spaces. It is computationally 

efficient compared to other RL algorithms because it 

uses a simple objective function and is easy to implement, 

making it suitable for large-scale applications. It is a 

flexible algorithm that can be applied to a variety of RL 

tasks. It is also compatible with both on-policy and off-

policy learning, allowing it to learn from both current and 

historical data [4]. 

 As discussed in the introduction, two different types of 

rewards are utilized to train the RL agent and evaluate 

their sensitivity. The rewards utilized in this study 

include pressure reward, which pertains to the primary 

side pressure of the nuclear power plant, and Core Exit 

Temperature (CET) reward, which is associated with the 

core exit temperature. 

 The pressure reward was set based on data showing that 

a high peak in primary pressure occurs when a reactor 

pressure vessel (RPV) failure occurs. The pressure 
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reward is designed to obtain accident scenarios with 

more severe consequence by allowing a higher reward to 

occur if the pressure peak occurs at an earlier point in 

time, as shown in equation 1. 
 

𝐏𝐫𝐞𝐬𝐬𝐮𝐫𝐞 𝐫𝐞𝐰𝐚𝐫𝐝 = {
𝚫𝐏𝟏𝐬𝐭 × (𝒓𝒆𝒎𝒂𝒊𝒏 𝒕𝒊𝒎𝒆) (𝚫𝐏𝟏𝐬𝐭 > 𝟎)

𝟎 (𝚫𝐏𝟏𝐬𝐭 < 𝟎)
       

eq.1  

 

In the case of CET reward, it is based on the severe 

accident management guide (SAMG) entry condition, so 

that the earlier the SAMG is entered, higher reward is 

obtained.  

 The RL agent is trained by repeating 1,000 episodes (i.e. 

scenario) using each reward. The configuration of the RL 

agent used is shown in Table 1.  

 

Table 1. Configuration of PPO Agent 

 Configuration 
Activation 
Function 

Output Layer 
Activation 

Actor 

Network 
7/128/256/128/7 ReLU SoftMax 

Critic 

Network 
7/128/256/128/1 ReLU Linear 

 

 The accident scenario is generated by the PPO method, 

which determines the behavior probabilistically [4]. 

Thus, 1,000 new scenarios were generated using the 

trained RL agent, and the most frequent failure time for 

each component was used as the final accident scenario. 

The severity of the accidents, such as the SAMG entry 

point, core uncovery, and fraction of clad reacted in the 

vessel, were compared using MAAP code to validate the 

final accident scenario. Mitigation strategies 1, 2, and 3 

of SAMG will be activated during this process by 

following the SAMG.  

 

 

3. Results & Discussions 

 

 Table. 2 shows when and how often the RL agent with 

pressure reward selected the time of component failure. 

 

Table 2. The Most Frequent Component Failure Time and 

its Frequency with Pressure Reward RL Agent 

 HX HPI LPI CSS MDAFW CHP 

Failure (hr) 2 15 3 1 3 1 

Frequency 233 189 96 437 179 225 

 

The time of failure of a given component in the table 

above is used for MAAP verification. As mentioned in 

the companion paper Part 1, the timing of the RCP seal 

LOCA will not be determined by the RL agent, but will 

be verified with MAAP as a case of failure at 1 hr. 

Scenarios determined by the RL agent using CET 

rewards under the same conditions are also validated. 

Table. 3 shows the most frequent component failures 

determined by the RL agent using CET rewards and their 

frequency. 

Table 3. The Most Frequent Component Failure Time and 

its Frequency with CET Reward RL Agent 

 HX HPI LPI CSS MDAFW CHP 

Failure (hr) 7 1 3 6 3 5 

Frequency 101 888 195 113 335 126 

 

 Based on Tables 2 and 3, two accident scenarios were 

verified with MAAP, and the important parameters are 

shown in Table 4. The accident scenario generated from 

RL using CET reward was determined to have more 

severe consequence (earlier occurrence of core uncover 

and SAMG entry) than the scenario generated from RL 

using pressure reward. 

   

Table 4. Accident Parameters 

 Pressure Reward CET Reward 

Core Uncover 

Time (hr) 
22.181 8.113 

SAMG Entry 

Time (hr) 
23.863 9.076 

Fraction of Clad 
Reacted (%) 

0.04 39.27 

RPV Failure None None 

 

 The accident scenario generated with RL using CET 

reward shows faster occurrence of both Core uncovery 

and SAMG Entry.  The reaction rate of the cladding 

material was also higher in the accident scenario 

generated with RL using CET reward. However, both 

accident scenarios did not have RPV failure as 

consequence. This was due to the activation of the 

mitigation measures under the SAMG condition, which 

prevented the RPV failure against all possible scenarios 

generated from RL agent. The RL using pressure reward 

produced an accident scenario with RPV failure when the 

mitigation measures are disabled, and this result will be 

discussed in a companion paper Part 3. 
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Figure 1. Primary Pressure in Pressure Reward Scenario 

  As shown in Figure 1, the primary pressure did not 

increase abruptly during the 72-hour accident, and at 15 

hours into the accident, the primary pressure decreased 

with the HPI failure, causing the coolant inside the RPV 

to boil, leading to the accident scenario being determined 

by the reward of increasing pressure, shown in Figure 2. 

After the mitigation was implemented (red dotted line in 

Figure 2), the CET quickly decreased and stabilized. 

 

 

Figure 2. Maximum CET in Pressure Reward Scenario 

 As shown in Figure 3, the accident scenario with CET 

has a faster SAMG entry point (red dotted line). 

 

Figure 3. Maximum CET in CET Reward Scenario 

 In both accident scenarios, the CET decreased rapidly 

after the mitigation measures (red dotted lines) were 

activated. However, for the accident scenario generated 

from the RL using CET reward, the peak CET was higher 

compared to the accident scenario generated from the RL 

using pressure reward.   

 
4. Conclusions & Further Works 

 

In conclusion, faster core uncovery and earlier SAMG 

entry time, higher peak CET, and larger fraction of clad 

reacted values confirm that accident scenario generation 

using the RL with CET reward is better when severe 

accident mitigation measures are enabled. What is 

important to note from the above results is that the nature 

of the reward is reflected in the outcome of the nuclear 

accident scenarios determined by the RL agent. It is 

expected that accident scenario generation from RL can 

provide insights to the specific vulnerabilities that 

researchers are looking for. 

 However, the optimization methodology via RL is 

computationally intensive. The iterative nature of RL 

optimization is incompatible with existing thermo-

hydraulic analysis tools. In this study, a surrogate model 

was used to address this computational load, but the 

process simplifies the accident description and has a low 

time resolution. As a result, the output of RL will 

inevitably be affected by the performance of the 

surrogate model. Improvements in the surrogate model 

that reduce the computational load while simplifying the 

accident phenomenon less are expected to improve the 

performance of RL. 
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