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1. Introduction 
 

One of important tasks for operators in abnormal 
situations at nuclear power plants (NPPs) is to perform 
urgent actions to prevent the reactor trip and monitor trip-
related parameters. However, the decision-making is 
known difficult due to time pressure and urgency [1]. In 
addition, sometimes, there is too much information to 
consider when operators make decisions. NPPs have 
approximately 4,000 alarms and monitoring devices in 
the main control room as well as more than one hundred 
abnormal operating procedures [1]. These information 
overloads could confuse operators as well as increase the 
likelihood of errors caused by the increase of mental 
workload. 

Some abnormal operating procedures (AOPs) require 
operators to perform urgent actions to prevent the reactor 
trip, even before performing the diagnosis. In addition, 
operators need to monitor whether the trip parameters 
reach the trip setpoints, which leads to the emergency 
operation. Under these situations, adequate situation 
awareness (SA) affects the effective mitigation of 
abnormal situations. According to Ensley’s three levels 
of SA, Level 3 SA, which involves predicting future 
situations, provides the knowledge and time necessary to 
determine the most favorable course of action to ensure 
safety [2].  

In this light, this study proposes an algorithm to 
predict the trip parameters and remaining trip time with 
uncertainty in abnormal situations of NPPs. This 
algorithm uses transformer encoder, gated recurrent unit 
(GRU), and conditional variational autoencoder (CVAE). 
The goal is to predict the long-term trend of trip 
parameters for 240 time-steps equivalent to 40 min 
projection with 10 second intervals. The transformer 
encoder and GRU decoder are used to predict the long-
term trend and increase the accuracy of prediction, while 
CVAE is utilized to estimate the uncertainty of 
prediction results. This algorithm was trained and 
implemented using the 3KEYMASTER simulator based 
on a 1400 MWe pressurized water reactor. 

 
2. Methods  

 
2.1 Transformer Encoder 

 
The transformer was firstly introduced by Vaswani et 

al., which was mainly based on the attention mechanism 
[3]. It achieved great success in various natural language 
processing tasks. The transformer encoder shown in Fig. 

1 is composed of stack of 𝑁𝑁  layers with identical 
structures. Each layer includes two sub-layers: a muti-
head attention layer and a fully connected layer. The 
residual connection and layer normalization are used in 
each sub-layer to improve the performance. The residual 
connection allows the model to learn an identified 
mapping, which helps to preserve important information 
from the input sequence. Layer normalization helps to 
improve the stability and convergence of the model by 
normalizing the inputs to each layer. The combination of 
the two sub-layers in the transformer encoder allows the 
model to learn complex representations of the input 
sequence by attending to different parts of the sequence 
and mapping them to a higher-dimensional space. The 
residual connections and normalization help to prevent 
the vanishing gradient problem and improve the 
performance of the model [3]. 
 

 
Fig. 1. The architecture of the transformer encoder 
 
2.1.1 Multi-head Attention 
 

The multi-head attention allows the model to learn 
different aspects of the input representation. It consists of 
several parallels scaled dot product attention. The scaled 
dot product attention is the core foundation of the 
transformer encoder derived from the attention 
mechanism [3]. It relates different positions of a single 
sequence to compute a representation. In the scaled dot 
product attention, an input data 𝑋𝑋 ∈ ℝ𝑇𝑇×𝐷𝐷 , where 𝑇𝑇 is 
the number of input time steps and 𝐷𝐷 is the number of 
input dimensions, is packed into a query matrix 𝑄𝑄𝑥𝑥, a key 
matrix 𝐾𝐾𝑥𝑥 , and a value matrix 𝑉𝑉𝑥𝑥 . The matrix sizes of 
𝑄𝑄𝑥𝑥 , 𝐾𝐾𝑥𝑥 , and 𝑉𝑉𝑥𝑥 are all ℝ𝐷𝐷×𝑑𝑑𝑘𝑘, where 𝑑𝑑𝑘𝑘 is a scaling factor. 
The scaled dot product attention can be calculated as 
shown in Eq. (1). 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄𝑥𝑥 , 𝐾𝐾𝑥𝑥 , 𝑉𝑉𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝑥𝑥𝐾𝐾𝑥𝑥
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The scaled dot product attention is further refined as 
multi-head attention to jointly attend to the information 
from different representation subspaces as different 
positions [3]. In multi-head attention, each attention 
function is executed in parallel with the respective 
projected version of the query, key, and value matrix. 
Then the outputs of all scaled dot product attention 
functions are concatenated together to produce the final 
result through a linear layer. The multi-head attention is 
calculated as shown in Eq. (2). 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑄𝑄𝑥𝑥 , 𝐾𝐾𝑥𝑥 , 𝑉𝑉𝑥𝑥) =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑒𝑒𝑒𝑒𝑒𝑒1, … , ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ)𝑊𝑊𝑂𝑂, 
where ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄𝑥𝑥𝑊𝑊𝑖𝑖

𝑄𝑄 , 𝐾𝐾𝑥𝑥𝑊𝑊𝑖𝑖
𝐾𝐾 , 𝑉𝑉𝑥𝑥𝑊𝑊𝑖𝑖

𝑉𝑉) (2) 
 
where 𝑖𝑖 = 1, … ℎ and 𝑊𝑊𝑖𝑖

𝑄𝑄 , 𝑊𝑊𝑖𝑖
𝐾𝐾 , 𝑊𝑊𝑖𝑖

𝑉𝑉 , 𝑊𝑊𝑂𝑂 are learnable 
parameters. 

 
2.2 Gated Recurrent Unit 
 

GRU is a neural network architecture based on the 
recurrent neural network (RNN) for processing long 
temporal sequences of data. It simplifies the network 
structure while ensuring the original accuracy of long 
short-term memory (LSTM), which has strong ability 
and efficiency [4]. The architecture of GRU is shown in 
Fig. 2. Compared with LSTM, GRU mixes the input gate 
and the forget gate into the update gate and combines the 
hidden state with the cellular state. The update gate 
determines how much past information is passed into the 
future. While the reset gate decides how to combine the 
new input information with the previous information. 
The calculation formulas of the GRU are as follows Eqs. 
(3-6).  

 
𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) (3) 
𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) (4) 
ℎ𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ ∙ [𝑟𝑟𝑡𝑡⨀ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡]) (5) 
ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡)𝑟𝑟𝑡𝑡⨀ℎ𝑡𝑡−1 + ℎ𝑡𝑡� ⨀𝑧𝑧𝑡𝑡 (6) 
 
Here, 𝜎𝜎 and 𝑡𝑡 represent a sigmoid function and time 

state, respectively. The cellular state is determined as 
shown in Eq. (5), where ℎ𝑡𝑡�  represents the cellular state. 
Finally, GRU provides the output using Eq. (6), where 
ℎ𝑡𝑡 represents the current hidden state [4].  
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Fig. 2. The architecture of the GRU 
 
2.3 Conditional variational autoencoder 
 

CVAE is an extension of the variational autoencoder 
to conditional tasks such as translation. Each component 
of the model is conditioned on some observed 𝑥𝑥 , and 
models the generation process according to the graphical 
model. The model distribution is denoted as 𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝑧𝑧), 
while 𝑧𝑧 is a latent variable with a standard Gaussian prior 
and factor 𝑝𝑝(𝑦𝑦|𝑥𝑥, 𝑧𝑧). The variational lower bound of the 
CVAE can be formulated as shown in Eq. (7); where 
𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) is the prior model of the CVAE, 𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥, 𝑦𝑦) is 
the posterior approximator of the CVAE, and 𝑝𝑝𝜃𝜃(𝑦𝑦|𝑧𝑧, 𝑥𝑥) 
is the decoder with guidance from 𝑧𝑧. 

 
𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜃𝜃, 𝜙𝜙; 𝑥𝑥, 𝑦𝑦) = −𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥, 𝑦𝑦)||𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥)) +

𝔼𝔼𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥,𝑦𝑦)[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝜃𝜃(𝑦𝑦|𝑧𝑧, 𝑥𝑥)] (7) 
 
The first term of Eq. (7) is the Kullback-Leubler 

divergence between the variational distribution 
𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥, 𝑦𝑦)  and prior distribution 𝑝𝑝𝜃𝜃(𝑧𝑧|𝑥𝑥) . This term 
forces the variational distribution to be similar to the 
prior distribution by working as a regularization term. 
The second term of Eq. (7) can be understood in terms of 
the generation of 𝑦𝑦 through the variational distribution 
𝑞𝑞𝜙𝜙(𝑧𝑧|𝑥𝑥, 𝑦𝑦) and the likelihood 𝑝𝑝𝜃𝜃(𝑦𝑦|𝑧𝑧, 𝑥𝑥) [5]. 

 
3. Development of a Prediction Algorithm for Trip 

Parameters and Remaining Trip Time 
 

The overall structure of the prediction algorithm of the 
trip parameters and remaining trip time is shown in Fig. 
3. It comprises 4 functions: 1) pre-processing, 2) long-
term prediction, 3) uncertainty estimation, and 4) post-
processing. To develop this algorithm, multiple deep 
learning methods which are transformer encoder, GRU 
decoder, and CVAE, were applied. The transformer 
encoder and GRU decoder are used to predict the precise 
long-term trend and increase the time steps of prediction, 
while CVAE is applied to assess the uncertainty of 
prediction results. 

 

1) Pre-processing

2) Long-term prediction

3) Uncertainty estimation

4) Post-processing

Min-Max normalization

Long-term prediction network

De-Normalization

Plot the predicted results with 
uncertainty

Graphical predicted safety 
parameters

Initial i = 1

i = i + 1

No

Yes

Plant parameters

i ≥ 100, 
Accumulate

prediction results

Calculate the mean and SD

Calculate the confidence interval

Identify whether the prediction 
results reach the trip set-point 

Calculate the remaining trip 
times  

Fig. 3. The architecture of the prediction algorithm. 
 

3.1 Pre-processing Function 
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The first function of the algorithm is to process the 
plant parameters and make them suitable as network 
inputs. The input data for the network should have a 
range of values from 0 to 1. Generally, variables with 
higher values will have a larger impact on the network 
results. However, larger, absolute values are not 
necessarily more important for prediction than small 
ones. This problem may produce local minima. Min-max 
normalization is used to prevent the local minima 
problem and increase the learning speed. The training 
data of the network is calculated by using Eq. (8). Here, 
𝑋𝑋 is the current value of the plant parameters which are 
input and output data. 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum 
and maximum values of train data, respectively. In this 
equation, 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 has a range of 0 to 1.  

 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚) (8) 
 

3.2 Long-term Prediction Function 
 
This function predicts the long-term trend of variables 

for trip parameters via a combination of the transformer 
encoder, GRU decoder, and CVAE. This network is 
based on an encoder-decoder network to apply for the 
multi-input and multi-output framework. In addition, a 
Bayesian model was used to estimate the model 
uncertainty. This network receives the normalized plant 
parameters from the pre-processing function and predicts 
the long-term behaviors of trip parameters. Fig. 4 
illustrates the process of the long-term prediction 
function, which consists of three main components: 
transformer encoder, variational layer, and GRU decoder. 
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Fig. 4. Process of long-term prediction function. 
 
3.3 Uncertainty Estimation Function 

 
This function is used to estimate the uncertainty of 

long-term prediction results. It has been implemented 
with the Bayesian model using conditional variational 
autoencoder. One of the characteristics of the Bayesian 
model is that even if the same input data is fed to the 
network, the network outputs different results. Thus, the 
prediction uncertainty can be quantified by running 
several forward passes through the network. This 
function accumulates the 100 steps of prediction results 

of the long-term prediction network using the same input 
data, and the mean and standard deviation (SD) are 
calculated using Eq. (9) and Eq. (10), respectively, where 
𝑌𝑌(𝑙𝑙) is the prediction results of long-term prediction 
function at time 𝑙𝑙th. To set the confidence interval, the 
upper bound 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑌𝑌 is determined by adding 1.96 𝜎𝜎𝑌𝑌 to 
𝜇𝜇𝑌𝑌 , and the lower bound 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑌𝑌  is determined by 
adding -1.96  𝜎𝜎𝑌𝑌  to 𝜇𝜇𝑌𝑌 . That is, this function provides 
uncertainty with a confidence interval that can be 95% 
certain of the predicted mean. 

 
𝜇𝜇𝑌𝑌 = 1

100
∑ 𝑌𝑌(𝑙𝑙)100

𝑗𝑗=1  (9) 

𝜎𝜎𝑌𝑌 = �∑ (𝑌𝑌(𝑙𝑙)−𝜇𝜇𝑌𝑌)2100
𝑙𝑙=1

100
 (10) 

 
3.4 Postprocessing Function 

 
The last function is used to make normalized 

prediction results into suitable units and ranges. 
Subsequently, the results are also plotted graphically, 
and then the remaining trip times are evaluated. The first 
step of this function is to perform the denormalization of 
the prediction results, i.e., mean prediction values and 
upper and lower bounds. The denormalization is based 
on Eq. (11), where  𝑌𝑌�  and 𝑌𝑌  are denormalized and 
predicted values, respectively. Meanwhile, 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚  and 
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚  are the minimum and maximum values of the 
output train data, respectively. This function plots the 
graph using the denormalized mean value and fills the 
area between the upper and lower bounds for the 
confidence interval and then presents it.  

 
𝑌𝑌� = 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑌𝑌 ∗ (𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚) (11) 
 
To calculate the remaining trip time, this function 

checks whether any of the predicted parameters reach the 
trip setpoint. If the prediction results (i.e., mean 
prediction values and upper and lower bounds) have 
reached the trip setpoint, this function identifies which 
parameters are reached. Then, the remaining trip times 
are calculated when identified parameters reach the trip 
set point from the current time. 

 
4. Experiment  

 
4.1 Data Collection 

 
The proposed algorithm was implemented using the 

3KEYMASTER simulator based on a 1400 MWe 
pressurized water reactor. To predict the trip parameters 
and remaining trip time, we chose the pilot-operated 
safety relief valve (POSRV) stuck open scenario which 
can cause the reactor trip. Total of 50 different cases with 
different opening sizes (1% to 6% at 0.1% intervals) 
were simulated. All simulations were started from the 
100% full-power operation and the data were collected 
at the one-second interval for one hour. Each scenario 
injected the malfunction after 10 minutes from starting 
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the simulation. Among 50 cases of the POSRV stuck 
open scenarios, 40 cases were used for training while 10 
cases were used for testing the algorithm.  

 
4.2 Training 
 

This study selected 10 parameters as the output of the 
algorithm that are trip parameters of the reference plant. 
Table I shows the parameters and trip setpoints. To 
predict 40 minutes of behavior, the time length of the 
output prediction was selected as 240 steps (i.e., 2,400 
seconds). In addition, 40 scenarios (i.e., 12,000 datasets) 
were used for the training. Among them, 20% of the 
training data (2,400 datasets) were randomly selected for 
validation to prevent overfitting.  

To train the network, this study used the network input 
as the 60 input sequences and 715 input parameters. The 
mean absolute percentage error (MAPE) of validation 
results was monitored during the training. The MAPE is 
defined by Eq. (12). Where 𝑙𝑙  and 𝑛𝑛 indicate the index 
and number of prediction data, respectively. 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  and 
𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  indicate the real values and predicted values, 
respectively. The MAPE of the validation results was 
1.23%. In addition. the train loss and validation loss 
converged into 1.4442E-04 and 9.9872E-05 at 1,326 
epochs, respectively. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  100%
𝑛𝑛

∑ �𝑌𝑌𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑌𝑌𝑙𝑙

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑌𝑌𝑙𝑙
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑛𝑛

𝑙𝑙=1  (12) 

 
Table I: Trip parameters and each trip setpoint. 

Trip parameters (Units) Trip setpoints 

Cold-leg #1A, 1B temperature (℃) Low setpoint: 262.2℃ 
High setpoint: 310.6℃ 

Reactor power (%) High setpoint: 110.4% 
Steam generator (SG) #1,2 pressure 
(𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2) 

Low setpoint: 59.5 𝑘𝑘𝑘𝑘/
𝑐𝑐𝑐𝑐2 

SG #1,2 narrow level (%) Low setpoint: 45% 
High setpoint: 91% 

Pressurizer pressure (𝑘𝑘𝑘𝑘/𝑐𝑐𝑐𝑐2) 

Low setpoint: 140.7 𝑘𝑘𝑘𝑘/
𝑐𝑐𝑐𝑐2 
High setpoint: 167.6 𝑘𝑘𝑘𝑘/
𝑐𝑐𝑐𝑐2 

Containment pressure (𝑐𝑐𝑐𝑐𝐻𝐻2𝑂𝑂) High setpoint: 124.1 
𝑐𝑐𝑐𝑐𝐻𝐻2𝑂𝑂 

DNBR Low setpoint: 1.29 
 

4.3 Result 
 

The test for the trained algorithm was performed by 
using 10 scenarios (i.e., 3,000 datasets). The MAPE of 
test results is 1.93%. In general, the values of MAPE 
below 10% can designate a high accuracy of prediction 
[2]. The prediction results demonstrated that the 
proposed algorithm accurately predicted 40 min of trip 
parameters (i.e., 10 parameters and 240 steps).  

Fig. 5 shows the test results of the 40 min prediction 
of 10 trip parameters with uncertainty estimation and 
remaining trip times in the case of 5.3% POSRV stuck 
open. The black and blue lines represent the trip setpoint 

and the past trends of the trip parameters, respectively. 
The red and orange lines represent the prediction results 
by the proposed algorithm and real trends in the test 
scenarios, respectively. The light gray shaded areas 
represent the 95% confidence intervals of predicted 
values.  

In addition, since the predicted pressurizer pressure 
and DNBR reached the trip setpoint, the mean remaining 
trip times were calculated from the current time as 2,080 
seconds and 2,120 seconds, respectively. In addition, the 
confidence area indicated that the remaining trip times of 
pressurizer pressure were 2,040 seconds and 2,120 
seconds. The interval of DNBR remaining trip time with 
95% confidence is from 2,090 to 2,140 seconds from the 
moment. The real remaining trip time in the scenario was 
2,100 seconds. The results demonstrate that the proposed 
algorithm could accurately predict the trip parameters 
with 240 steps and the remaining trip time. 

 

 

 
Fig. 5. Predicted results of trip parameters and remaining trip 
time for 5.3% POSRV stuck open scenario. 

 
4. Conclusions 

 
A novel prediction algorithm that combines the 

transformer encoder, GRU decoder, and CVAE network 
was proposed herein to predict long-term trends and 
provide the remaining trip time. The proposed algorithm 
not only predicted 10 parameters by 240-time steps 
equivalent to 40 min but also provided the uncertainty 
information regarding the prediction results. In addition, 
the proposed algorithm also calculated the remaining trip 
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time based on the predicted trip parameters. The 
validation demonstrated that the proposed algorithm 
could provide an accurate prediction, as intended. Hence, 
this algorithm can be applied to an operator support 
system to improve the SA of operators during abnormal 
situations in NPPs. 
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