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1. Introduction

Effective emergency response strategies are essential
in minimizing the devastating impact of nuclear power
plant fires, which can cause significant loss of life and
property damage. A crucial aspect of fire emergency
response is timely evacuation of a space from a fire.
This study presents a novel approach for evacuation
time of a ventilated main control room using machine
learning. The aim is to predict evacuation variables
which is necessary for effective abandonment of the
main control room (MCR). The proposed methodology
combines consolidated model of fire growth and smoke
transport (CFAST) simulations and machine learning
model to predict evacuation time under different fire
scenarios based on initial fire conditions. The model is
trained on a dataset generated through CFAST
simulations specific to nuclear power plant conditions
and validated. The results demonstrate that the machine
learning model can accurately predict the time required
for meeting evacuation criteria based on initial fire
conditions of the main control room when the fire first
broke out. This study provides a useful tool for fire
safety design and evacuation planning in nuclear power
plants, ensuring the safety of personnel during a main
control bench board fire. The primary focus of our
study was on hot gas layer temperature as the key factor
in determining evacuation criteria, given its importance
in predicting the spread of fire and potential hazards to
occupants. While smoke can also be a critical factor in
ensuring the safety of occupants during evacuation, our
study was limited by the availability of data and
resources  primarily  centered on  temperature
measurements.

2. Overview of the MCR model

The main control bench board (MCB), which
contains numerous electrical enclosures shaped like a
horseshoe and has all of its walls closed except for the
ventilation area, is depicted in Fig. 1 from the top view.
The height of the MCB consisting of 11 panel boards
(PB) is 2.9 m. The floor area of the compartment has
been taken from the previous study [1] which is given
by 21.4 m x 18.4 m. The thickness of concrete walls is
0.4 m. The overall flow rate through the 24 supply vents,
each measuring 0.4 m x 0.4 m, is 7.08 m3/s. The flow
rate through the four each exhaust valves, which are 1.0

m x 0.6 m in size, is 1.00 m3/s. The door condition was
examined in three different circumstances: (i) closed
door all time, (ii) closed door and then open after 10
minutes, and (iii) open door all time. The door is
assumed to open at 10 minute after a fire is started.
Since the operators (target) often stand close to the
operator console, it was presumed that they were
situated in the middle of the MCR. With reference to the
SFPE Handbook, loose leakage area condition was
taken into consideration in this investigation [2].
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Fig.1. Top view of the reference MCR
2.1 Fire Scenario and evacuation criteria

PB-10 is considered as the main source of ignition
when ventilation is in operation, leading to the
propagation of fire to adjacent panel boards PB-09, PB-
08, and PB-07 in approximately 10 minutes. If a fire
occurs in one MCB panel, it has the potential to spread
to neighboring MCB panels, resulting in malfunction or
failure of safety systems connected to them. In each
MCB panel, there was XLPE/Neoprene cable having a
chemical composition of CsHysCyos. The input
parameters according to NUREG-1805 [3], SFPE
Handbook and NUREG-1934 [4] are mentioned in
Table 1. The peak heat release rate (HRR) value of a
single panel is assumed to be 400 or 702 kW, according
to NUREG/CR-6850 [5]. To avoid operators from
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losing habitability and leaving the MCR, the hot gas
layer temperature (HGLT) should not go beyond 95°C
according to NUREG-6850. This criteria should be
satisfied to prevent operators from loss of habitability
and abandon the MCR.

Table I. Input parameters for CFAST model analysis

Input parameters Values
HRR (kW) 400 and 702
Fire propagation time (minute) 10
Ventilation height (m) 2.2
Fire source height (m) 0.9

Leakage area ratio (m?/m?) 3.5 x 10 (Loose)

Door conditions Closed, Closed-Open

CFAST dataset, which was prepared by normalizing and
removing some missing data points, and subsequently
divided into 90% training and 10% testing subsets. The
MLP was trained to minimize the loss function known
as residual sum of squares between actual and predicted
values using the backpropagation algorithm and the
Adam optimization method.

Table II: Input variables for training the MLP.

Input Variables Values
Peak HRR 400, 702
Propagation Time 10, 15
Door Condition Closed, Closed-open, Open
Height of Fire 0,0.45,09
Ventilation Height 22,2.7,3.2
Flow Rate 1.0, 1.25, 1.52,51.75, 2,225,
Leakage Area Ratio Tight, Loose, Very Loose
Ambient 20,25, 30, 35 and 40
Temperature

and Open
Ventilation flow rate (m3/s) 1.00
Ambient temperature (°C) 20
Effective fuel formula Cs;H45Clo s
Heat of combustion (kJ/kg) 10,300
CO, yield (kg/kg) 0.63
COyield (kg/kg) 0.082
Soot yield (kg/kg) 0.175
Radiative fraction 0.53

2.2 Machine learning

To predict the duration time required for the HGLT to
exceed 95°C in the ventilated main control room during
a fire outbreak, this study employed a Multi-Layer
Perceptron (MLP) model with input variables such as
heat release rate (HRR), fire propagation time,
ventilation height, flow rate, height of fire, ambient
temperature, leakage area ratio, and door condition.
Table II presents the eight input variables used for
training the MLP model. These input variables represent
the initial fire conditions of the MCR in the CFAST
analysis. We preprocessed the categorical data variables
of door condition and leakage area ratio into one-hot
encoding values, resulting in 12 input variables of the
MLP model. The output variable is the duration of time
taken for the HGLT to exceed 95°C in the CFAST
simulation. We created the CFAST dataset through
11,340 CIFAR simulations, which represent all possible
combinations of input variables.

The MLP is a type of neural network that consists of
one or more hidden layers between the input and output
layers. Each hidden layer consists of multiple neurons
that use activation functions to introduce non-linearity
into the model, allowing for a better understanding of
the relationship between the input and output variables.
We used the MLP model with a single hidden layer
containing of 32 neurons and gaussian error linear units
activation function. The input layer consists of 12
neurons to take in 12 input variables, while the output
layer has one neuron to output the time taken for HGLT
to first reach 95°C. The model was trained using a

3. Results and discussions
3.1 CFAST simulation results

Fig. 2 displays the changes in target output parameters
of CFAST, HGLT, at a height of 1.8 meters above the
floor, in response to various input parameters including
peak HRR and door conditions when the fire
propagation time is 10 minute and ventilation flow rate
of 1.00 m’/s with loose leakage area condition at
ambient temperature of 20°C. The study has revealed
that the closed-door condition results in the highest
values for the HGLT. In the closed-door condition, the
HGLT is significantly higher compared to when the
door is open. At peak HRR of 400 and 702 kW, the
maximum values for HGLT are 119°C and 189°C,
respectively, for the closed-door condition.

Table III provides an overview of the changes in the
abandonment time, which refers to the duration at
which the evacuation criteria meet the relevant
standards, for a peak HRR of 400 and 702 kW. The
results indicate that the HGLT at HRR of 400 kW takes
longer to meet the relevant criteria compared to that at
HRR of 702 kW. Furthermore, the change in door
conditions from closed-door to open-door condition
caused a delay in the abandonment time from 1630 to
1746 seconds, by 116 seconds for HGLT at HRR= 400
kW, and from 1118 to 1123 seconds, by 5 seconds, at
HRR= 702 kW.
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Fig. 2. Variations of HGLT with respect to different door
conditions

Table III. Abandonment time of MCR fire scenario for
different door conditions

Abandonment Time (s)
Fire scenario HGLT
Flow Rate =1.00 m%/s, T, =

20°C, 10 min, loose leakage area HRR = HRR =
(Door conditions) 400 kW 702 kW

Closed door 1630 1118

Closed-Open door 1728 1122

Open door 1746 1123

3.2 Prediction results

To evaluate the performance of the model, we
utilized R? score, also known as the coefficient of
determination. It indicates how well the predictions
made by a machine learning model fit the actual data. It
ranges from 0 to 1, with 1 indicating a perfect fit and 0
indicating that the model provides no improvement over
using the mean value of the output variable. A higher R?
score indicates a better fit of the model to the data. For
pairwise comparisons, we conducted five repeated
experiments with different seeds and reported the mean
of R? score.

The average R? scores of the MLP model for the
training and testing data over five repeated experiments
are 0.98 and 0.97, respectively, demonstrating the
model's prediction ability to accurately predict
evacuation times based solely on the initial fire
conditions without overfitting the training data. Fig. 3
depicts the MLP model's predictive performance in
terms of evacuation time using testing data. The x-axis
represents the predicted value obtained using the MLP
model, while the y-axis indicates the actual time taken
for the HGLT to reach 95°C during a fire. Each blue dot
represents the prediction result for a single fire scenario,
and most of the blue dots show a perfect match between

the predicted and actual values, indicating excellent
predictive performance. The performance of the MLP
model is slightly less accurate when predicting
abandonment times between 2,000 and 3,500 seconds
compared to other time intervals. After examining the
training data, we observed that the number of data
points in this interval is relatively small compared to
others. Therefore, we believe that the model's
performance in this group can be improved with more
data.
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Fig. 3. Example of visualizing the prediction results of the
MLP model.

4. Conclusions

During CFAST simulation, the closed-door condition
produces the highest values for the HGLT. Specifically,
the HGLT is considerably higher in the closed-door
condition compared to when the door is open,
highlighting the importance of effective evacuation
strategies. The use of machine learning algorithms to
predict the necessary evacuation time in the event of a
fire in critical facilities such as the MCR of nuclear
power plants is an effective approach that can
significantly improve fire safety. By applying the six-
step process of data collection, data preprocessing,
feature selection, model selection, model training, and
model evaluation to the CFAST dataset, we were able to
accurately predict the time required for the evacuation
criteria to be met for the first time after the outbreak of
a fire in the MCR. The average R? score of 0.97
indicates that our model provides a highly accurate fit
to the data, and can therefore be relied upon to make
precise predictions. This approach has the potential to
significantly improve fire safety in the MCR of nuclear
power plants.
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