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1. Introduction 

 
A nuclear power plant has a reactor trip system that 

enables automatic reactor trip when at least one of the 
important plant variables exceeds predetermined set 
values. These setpoints of the reactor trip system shall 
be set to consider the measurement uncertainty of the 
instrument channels. If the reactor trip setpoints are set 
too conservatively, an unnecessary reactor trip may 
occur which reduces the plant’s safety and operability. 
So the measurement uncertainty of the instrument 
channel should be evaluated appropriately. 

 
2. Current Method and Deficiency 

 
2.1 Current Method 

 
The current uncertainty for the reactor trip system 

setpoints in nuclear power plants complies with the 
uncertainty combination methodology of IEC 61888[1] 
and ISA67.04.01[2]. NRC endorsed ISA67.04.01  
through RG1.105[3]. The combining formula for 
uncertainty in IEC is represented by Eq. (1). 
 

                                  (1) 
where  
A, B : a certain confidence level of uncertainty of the 
input elements constituting the channel uncertainty, 
which is random, independent, and has the 
characteristics of a normal distribution.  
C : bias or dependent uncertainty 

 
However, Eq. 1 does not deal with the uncertainties 

of the input elements which are random and 
independent but do not have the characteristics of a 
normal distribution (e.g., a rectangular distribution). 
To treat non-normally distributed terms ISA 67.04.01  
added a new term  F as in Eq. 2. Normally distributed 
uncertainties are combined by the SRSS (Square Root 
of Sum of Square) method, and non-normally  
distributed uncertainties are arithmetically combined 
to the SRSS term.  
 

             (2) 
where  
A, B, and C : random, independent, and normally 
distributed terms with a certain level of confidence 
F : non-normally distributed uncertainties with a certain 
level of confidence and/or biases (unknown sign) 
L, M : bias with the known sign  

 
2.2 Comparison with Current Method with Monte Carlo 
Simulation  
 

The example is a simple additive model. 
y = x1 + x2 + x3 + x4  + x5                                 (3) 

 
The first three input quantities have normal 

distributions with a standard deviation of 1. The last 
two input quantities have rectangular distributions with 
standard deviations of 2 and 10 respectively. Sometimes 
only lower limits and higher limits are presented instead 
of mean and standard deviation. In that case, it is 
reasonable to assume a rectangular distribution[4, 5, 6]. 

 
Monte Carlo simulation can give the almost exact 

combined uncertainty. Monte Carlo simulation has been 
done written in the Python language and gives the 
combined uncertainty with a lower 2.5% value of -
17.79 and a higher 2.5% value of 17.77. The standard 
deviation is 10.34. 

The combined uncertainty obtained from Eq. 2 with a 
95% confidence level is 23.14. This uncertainty is 30% 
higher than the uncertainty obtained from the Monte 
Carlo simulation. This means that the current method 
can’t deal with non-normally distributed uncertainties 
appropriately. 

 
Reference [7] provides a procedure to validate the 

result calculated by the GUM95 method[4] with the 
Monte Carlo method. First, dlow and dhigh are calculated 
using Eq. 4 and Eq.5. 

 
dlow = | y – U(y) - ylow |                                       (4) 
dhigh = | y + U(y) - yhigh |                                     (5) 

where y is an expected value of the object to be 
measured, U(y) is the channel uncertainty calculated by 
other methods, and ylow and yhigh are 2.5% and 97.5% 
values calculated by Monte Carlo simulation. 
 

The numerical tolerance of the uncertainty, or the 
standard deviation, can be obtained by expressing the 
standard uncertainty as  , where c is an integer 
with a number of digits equal to the number of 
significant digits of the standard uncertainty and l is an 
integer. Then the numerical tolerance δ is expressed as: 

 

                                                  (6) 
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If dlow and dhigh both are less than the numerical 
tolerance, then the result is validated and accepted.  

Otherwise, it is determined as not validated. Two 
significant digits from the standard uncertainty is taken 
and the numerical tolerance turns out to be 0.5. For this 
case y = 0, ylow = -17.79 and yhigh = 17.77 from the 
Monte Carlo simulation. dlow and dhigh are 5.35 and 5.37, 
respectively. These values are greater than the 
numerical tolerance of 0.5. The uncertainty calculated 
by the ISA method can not be accepted. 

 
3. New Method and Validation of New Method  

 
3.1 New Method 

 
To overcome the deficiency of the ISA67.04.01 

method which results in an overestimated result when 
the non-normally distributed input quantities are 
dominant, we proposed a modified form of the 
uncertainty combination method used in IEC61888 as 
follows: 
 

     (7) 
where 
λ : compensation factor which considers the 
contribution of the rectangular distribution and depends 
on  

 : ratio of uncertainties of rectangular distributions to 
those of normal distributions 
 

 
 

A, B, and C: random, independent, and normally 
distributed terms with a certain level of confidence 
Fi: rectangularly distributed uncertainty with a certain 
level of confidence 
 

The combined distribution of normal distribution 
and rectangular distribution is called RN distribution. 
The shape of RN distribution depends on the   values 
as shown Fig. 1. As  approached to zero, then the 
RN distribution becomes a normal distribution and that 
becomes a rectangular distribution as  approaches 
infinity. 
 

 
Fig. 1 RN distribution 

 
The compensation factor λis calculated for a set of 
 values by comparing the uncertainty calculated by  

SRSS term in Eq. 7 and that of obtained from the Monte 
Carlo simulation. The result is given in Table 1 and Fig. 
2. 
 

Table 1 Compensation factor λ 

 
up to value  

 
up to value  

0.06 1.00 2.2 1.06 
0.2 1.01 2.6 1.05 
0.3 1.02 3.4 1.04 
0.4 1.03 4.0 1.03 
0.5 1.04 5.4 1.02 
0.5 1.05 10.0 1.01 
0.8 1.06 ∞ 1.00 
1.7 1.07   

 

 

 
Fig. 2 Compensation factor λ 

 
 
3.2 Validation of New Method 
 

For the given examples in section 2.2,  is 
calculated to be 1.83 from Eq. (8), and λ corresponding 
to this value is 1.06 from Table 1. The channel 
uncertainty is 18.15, which is close to the channel 
uncertainty -17.79 and + 17.77  calculated by Monte 
Carlo simulation. dlow and dhigh are 0.26 and 0.38, 
respectively. These values are smaller than the 
numerical tolerance of 0.5 and the uncertainty 
calculated by the new method can be accepted. 
 

4. Conclusions 
 

The channel uncertainty calculated using the new 
method, i.e. modified IEC method, shows good 
agreement with the Monte Carlo simulation and the 
numerical tolerance is acceptable. The proposed method 
could be an alternative method when input elements 
with the rectangular distribution exist.  
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