Evaluation of Improved Production Methods and Supply of no-carrier added Lu-177

Euntae Kim, Kanghyuk Choi*

Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, Korea *Corresponding author: khchoi@kaeri.re.kr

1. Introduction

Lutetium-177 (¹⁷⁷Lu, $t_{1/2} = 6.7$ d) is increasing in demand as an important therapeutic radionuclide for targeted radiotherapy in nuclear medicine because of its high theranostic potential. ¹⁷⁷Lu emits β - particles ($E_{\beta,\text{max}} = 498 \text{ keV}$) with a soft tissue penetration range of less than 3 mm and γ -rays ($E_{\gamma} = 208 \text{ keV}$ (11.0%) and 113 keV (6.4%)) suitable for imaging with a detector.

¹⁷⁷Lu can be produced in high yield by the ¹⁷⁶Lu(n,γ)¹⁷⁷Lu reaction. However, this production method has a limitation in that carrier ¹⁷⁶Lu are mixed and by-products ¹⁷⁷mLu with a long half-life ($t_{1/2} = 160$ d) are produced. In this respect, no-carrier added (nca) ¹⁷⁷Lu has high specific activity and high radionuclide purity without long-lived radionuclide impurity, making them particularly useful for radioimmunotherpy. The nca ¹⁷⁷Lu can be produced by the ¹⁷⁶Yb(n,γ)¹⁷⁷Yb \rightarrow ¹⁷⁷Lu reaction by irradiating neutrons to an enriched ¹⁷⁶Yb₂O₃ target. The critical process is the radiochemical separation of nca ¹⁷⁷Lu from macroscopic amount of Yb target with adjacent atomic number.

As the demand of lanthanide nuclides (including 177 Lu) increases, numerous researchers have devoted themselves to developing faster and more efficient separation techniques. In particular, the separation technology based on ion exchange to improve selectivity have been developed. In ion exchange technology, generally, α -HIBA and NH₄⁺ is used as a complexing agent and a separating ion, respectively. However, P.S. Balasubramanian reported that ¹⁷⁷Lu was separated from neutron-irradiated ytterbium using a cation exchange resin (Dowex-50X8, 200-400 mesh) with α -HIBA and Zn²⁺ ion as a separating ion.

KAERI has conducted to get a high purified ¹⁷⁷Lu from neutron-irradiated ytterbium targets. Better elution conditions than traditional methods for separating lanthanum elements have been secured. Based on this, separation was made possible under the reduced column length. These results provide the advantage of reducing waste and, above all, shortening the separation times.

The produced isotopes were supplied to five institutions to secure the purity and labeling yields.

2. Experiments

In the conventional method for purification, ¹⁷⁷Lu was recovered by serially connecting three 2 ml Seppak filled with cation exchange resin. HIBA was removed by washing 3 times each with 10 ml of 0.1 M HCl and 1 M HCl. When ¹⁷⁷Lu in the column was recovered with 9M HCl, the yield was about 60%. The improved method linked one 1 ml Sep-pak packed with cation exchange resin. When ¹⁷⁷Lu was eluted, 0.2M HCl was co-inject to the purification column to obtain ¹⁷⁷Lu. HIBA was removed by washing once with 0.1M HCl and 10ml of 1M HCl. Finally, ¹⁷⁷Lu was recovered with 9M HCl and its yield was about 90%. The purification time was also reduced from 3 hours to 1 hour, which is shown in Fig. 1.

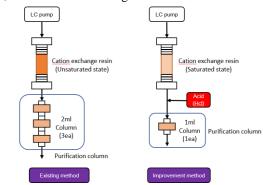


Fig. 1. Comparison of existing and improved method

Based on these experiments, large-scale (> 1Ci) equipment was designed. It will be divided into 4 section; LC pump section (part A), separation column section (part B), valve section (part C), and purification section (part D). This configuration is for rapid replacement in preparation for malfunction of each part. (Fig. 2)

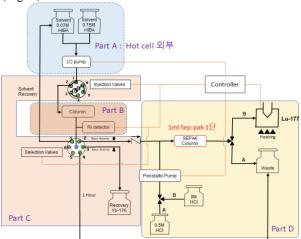


Fig. 2. The concept of a no-carrier added Lu-177 production equipment

3. Evaluation of Isotope Supplies

The spectrums of the HPGe show the radionuclide purity of the n.c.a ¹⁷⁷Lu like below Fig. 3. Before purification, the characteristic peak of the Yb series was identified (blue). After purification, it was confirmed that the characteristic peak of Yb was removed (red). As a result, it was confirmed that pure acid no-carrier added ¹⁷⁷Lu was produced.

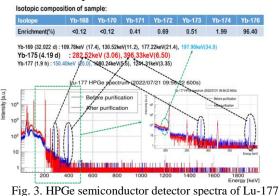


Fig. 3. HPGe semiconductor detector spectra of Lu-177 before and after separation

4. Conclusion

The improved methods for producing n.c.a ¹⁷⁷Lu could reduce processing time within 4hrs. Base on basic experiments and separation technologies, more than 1Ci of handling equipment is currently being manufactured. In the fall of 2023, n.c.a ¹⁷⁷Lu will be produced using the developed equipment.

REFERENCES

[1] S. Banerjee, M. R. A. Pillai, and F. F. (Russ) Knapp, Lutetium-177 therapeutic radiopharmaceuticals: Linking chemistry, radiochemistry, and practical applications, Chemical Reviews, Vol. 115, pp. 2934-2974, 2015.

[2] A. Dash, M. R. A. Pillai, and F. F. Knapp Jr., Production of ¹⁷⁷Lu for targeted radionuclide therapy: Available options, Nuclear Medicine and Molecular Imaging, Vol. 49, pp. 85-107, 2015.

[3] K. Hashimoto, H. Matsuoka, and S. Uchida, Production of no-carrier-added ¹⁷⁷Lu via the ¹⁷⁶Yb(n, γ)¹⁷⁷Yb \rightarrow ¹⁷⁷Lu process, Journal of Radioanalytical and Nuclear Chemistry, Vol. 255, pp. 575-579, 2003.

[4] S. Watanabe, K. Hashimoto, S. Watanabe, Y. Iida, H. Hanaoka, K. Endo, and N. S. Ishioka, Production of highly purified no-carrier-added ¹⁷⁷Lu for radioimmunotherapy, Journal of Radioanalytical and Nuclear Chemistry, Vol. 303, pp. 935–940, 2015.

[5] P. S. Balasubramanian, Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target, Journal of Radioanalytical and Nuclear Chemistry, Vol. 185, No. 2, pp. 305-310, 1994.

[6] Aran Kim, Kanghyuk Chol, Study on Separation Efficiency of Yb/Lu according to the Type of Ammonium Ion, Korean Nuclear Society, 2021.