Learning-based change point detection for robust and accurate nuclear counting

신창엽',이성호' '한국원자력연구원 방사선안전관리부

Introduction

- Change point detection in adaptive filtering approaches is
 highly important to achieve great performances for nuclear
 counting process.
- However, it represents poor performances for various of

Experimental Results

scenarios, leading to limited usages for radiation monitoring

 This research proposes a data-driven and learning-based change point detection model for robust and accurate nuclear counting

Proposed Method

- The change point detection model is a convolutional neural network and its training scheme is inspired by multi-label classification task.
- The model takes raw signals and then generates a change status of each time point.

o 500 1000 1500 2000 Time (s)

Results of change point detection

Evaluation metrics	Baseline method	Proposed method
Accuracy	65.61%	96.83%
Precision	57.24%	95.95%

Quantitative performances evaluations

Conclusion

• This paper presents the learning-based change point

detection method for boosting adaptive smoothing filters.

$$L = -\sum \sum \hat{y}_i^k \log \hat{y}_i^k + (1 - \hat{y}_i^k) \log(1 - \hat{y}_i^k)$$

The overall framework of the learning-based change point detection method

• The proposed method greatly improves the accuracy and

precision of change point detection, both quantitatively and qualitatively.

 In the future, the performance will be evaluated for the actual nuclear dataset.

