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1. Introduction 

 
The radiation monitoring system has been deployed in 

nuclear facilities to guarantee radiological safety and 

homeland security [1]. This is mainly because it allows 

us to continuously measure radioactivity levels in space. 

One of the key parts of the system is obviously the 

nuclear counting process which estimates count rates 

from stochastic signals received by radiation detectors. 

Here, the signals following Poisson law [2] make this 

process non-trivial since they generally show different 

fluctuation characteristics (i.e. variance) on the fly. 

Considering this property, lots of smoothing filters for 

stable and accurate counting process have been widely 

explored and also adopted in the real-world system. 

In the literature, a bunch of moving average filtering 

methods [3,4], based on simply averaging a signal 

sequence in a window, are applied to radiation 

monitoring systems because those methods are not only 

straightforward but highly powerful count rate estimators 

to some extent. In early approaches, the window size of 

the filter is predefined and fixed while neglecting trends 

of signals. In a decade, some of the adaptive filtering 

approaches [5,6] are developed in which the window size, 

a significant factor determining the compromise between 

accuracy and response time, is adjusted depending on 

trends of signals (i.e., steady state and sudden change). 

Note that detecting the change points among these trends 

is the most significant procedure as the change point can 

be interpreted as a start point of the window to calculate 

current and future estimates. Mostly, state-space models 

[6] tracking changes in statistical features such as mean, 

variance, and spectrum are exploited in existing adaptive 

filtering approaches. However, this is problematic in 

practice as neither true signal distributions nor types of 

variation are known a priori. Also, it necessarily requires 

hand-craft tuning by users for each use case. 

Recently, deep learning-based methods with neural 

networks have achieved great performance in the fields 

of signal processing, computer vision, and natural 

language processing [7,8]. In general, it is well known 

that extracting feature representation with such learning 

methods leads to robust and accurate predictions. At the 

same time, changing point and anomaly detection related 

research are carried out with notable results [9,10]. In 

contrast, to the best of our knowledge, learning-based 

methods still have not been considered for nuclear 

counting yet. In this paper, toward data-driven change 

point detections suited to real-world nuclear counting, a 

learning-based change point detection model with 

training schemes is elaborated. Experiments on feasible  

 

Fig. 1. (a) Illustration of nuclear counting in which the 

expected signal should be estimated from raw signals. 

(b) Typical trends of nuclear counting signals. 

radioactive events are performed and the method is 

evaluated in terms of both quantitative and qualitative 

performances.  

 

2. Methodology 

 

As shown in Fig. 1(a), nuclear counting is to estimate 

accurate nuclear counts (red line) from raw signals 

(green line). Accurate change point detection is required 

to improve the counting process. In this section, the 

overall method for model architecture, post-processing, 

training procedures, and the experimental setup is 

explained in detail. Firstly, nuclear counting dataset is 

described, and then the proposed change point detection 

model and training scheme are demonstrated. Next, the 

evaluation metrics are summarized to prove the model’s 

capability. In addition, the baseline model for 

comparison is explained lastly. 

 

2.1 Nuclear counting dataset 

 

According to the properties of radioactive materials 

disintegration, nuclear counting signals can be modeled 

by the Poisson law [1] as below: 

 

 𝑃(𝑁 = 𝑛) = 𝑒−(𝜆Δ𝑡)
(𝜆Δ𝑡)

𝑛!
                                                 (1) 

 



 

 

 

Fig. 2. The overall framework of the proposed learning-

based change point detection method. Fully connected 

layers are abbreviated as FCL, and all numbers right 

below layers indicate the size of each layer. 

where 𝑛  is counts, 𝜆  is count rates, and Δ𝑡  is time 

interval. The specificity of this Poisson law is that mean 

and variance of the Poisson distribution are the same. As 

illustrated in Fig. 1(a), nuclear signals with high intensity 

exhibit large fluctuation imposing serious difficulties in 

precise breakpoint detection.  

In this paper, 200,000 sequences of nuclear counting 

signals paired with labels of change status are produced 

and used for this experiment. The scenarios including 

stable state, and gradual/abrupt changes of the nuclear 

counts are considered as shown in Fig. 1(b). The size of 

each sequence is 1,000 time points. We used 70% of the 

data for training, 15% for validation, and 15% for testing.  

 

 

2.2 Change point detection model and training scheme 

 

The overall framework of the proposed method is 

illustrated in Fig. 2. The model takes raw signals in a 

window with a size of 1,000 and then generates a change 

status of each time point. After the model’s inference, a 

curve of resulted status is constructed and local maxi-

mums are selected as the final change points. Here, ‘1’ 

denotes the change point and ‘0’ denotes the steady state.  

The change point detection model architecture is a 

neural network composed of four fully connected layers 

followed by the Rectified linear unit (ReLU) for 

activation. Exceptionally, Sigmoid function is used in the 

last layer. Figure 2 demonstrates visualized network’s 

structure including the size of layers. 

In this paragraph, training schemes are described. The 

problem formulation can be regarded as a multi-label 

classification task. Given 𝐾 labels (𝑘 ∈ 𝐾), the network 

generates one logit (�̂�𝑖
𝑘) per label (𝑘) and class (𝑖). As a 

loss function, cross-entropy loss (𝐿) for multi-label is 

used as follows: 

 

𝐿 = −∑∑ �̂�𝑖
𝑘𝑙𝑜𝑔�̂�𝑖

𝑘 + (1 − �̂�𝑖
𝑘)log(1 − �̂�𝑖

𝑘)       (2) 

 

where 𝑘 is time points and 𝑖 is change status in this 

problem. For minimizing loss, Adam optimizer is used 

for training. The learning rate is initialized as 0.1 and the 

batch size was set as 8. All weights of fully connected 

layers are initialized using a normal distribution. All 

computations are performed on a single GPU (NVIDIA 

GTX 1070) along with Pytorch framework. The network 

 
 

Fig. 3. Results of change point detection on nuclear 

counting dataset with baseline and proposed methods. 

CP-B denotes change points by the baseline method and 

CP-P denotes the points by the proposed method. 

 

Evaluation 

metrics 

Baseline 

method 

Proposed 

method 

Accuracy 65.61% 96.83% 

Precision 57.24% 95.95% 

 

Table 1. Quantitative performances of the proposed 

method in comparison with baseline method. 

 

is trained for 200 epochs in total. 

 

2.3 Evaluation metric 

 

Quantitative performance measures of the detection 

are implemented with respect to both the precision and 

accuracy of predicted change points with corresponding 

labels. Here, a toleration distance 𝜏  is introduced to 

determine the correctness of predictions. Concretely, 

detected change points can be regarded as corrected ones 

if the following two conditions are met: 1) The detected 

change point 𝑎   is the closest to true point 𝑏 . 2) the 

difference between 𝑎 and 𝑏 is smaller than the toleration 

distance 𝜏 (|𝑎 − 𝑏| < 𝜏). In this experiment, 𝜏 is set to 

20.  

 

2.4 Baseline method for performance comparison 

 

As a baseline model compared to the proposed method, 

the state-space model is used which simply detects 

change points by tracking changes in the mean and 

variance. Concerning the estimated mean, the changing 

state 𝑆𝑡 at time 𝑡 can be formulated by following Eq. (3): 

 

𝑆𝑡 = {
𝐶ℎ𝑎𝑛𝑔𝑒,if|�̂�𝑡+1 − �̂�𝑡| > 𝛼
𝑆𝑡𝑎𝑏𝑙𝑒,𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (3) 

 

where �̂�𝑡  indicates the estimated count rate at the time 

𝑡 within an arbitrary buffer window, and 𝛼 is a threshold 

of changes. Also, detecting change points via estimated 

variance follows the same procedure as in eq. (3). With 

extensive parameter exploration, the best threshold 𝛼  

and size of the buffer window can be found.  

 

 

 



 

 

3. Results 

 

Figure 3 shows the visual comparison of change point 

detections. As expected, the Baselined method tends to 

miss some change points, i.e. transition from steady state 

to linear growth, since it can detect only obvious 

variations of statistical properties. On the other hand, the 

proposed method achieves high accuracy and precision 

for the most of transitions. At the same time, the results 

show the robust capability of the proposed model. 

Further, the quantitative evaluation is summarized in 

Table 1. It shows that the proposed method outperforms 

the baseline method by a large margin for both accuracy 

and precision. 

 

4. Conclusions 

 

This paper presents the learning-based change point 

detection method for boosting adaptive smoothing filters. 

Inspired by multi-label classification tasks, the model 

can predict change points at each time point. To this end, 

the network architecture composed of fully connected 

layers along with the training scheme is well elaborated. 

Experiments on the nuclear counting dataset show that 

the proposed method greatly improves the accuracy and 

precision of change point detection, both quantitatively 

and qualitatively. In the future, the performance will be 

evaluated for the actual nuclear dataset.  

 

REFERENCES 

 
[1] G. F. Knoll, Radiation Detection and Measurement, 4th ed. 

Hoboken, NJ, USA: Wiley, pp. 65–105, 2010. 

[2] G. Apostolopoulos, “On-line statistical processing of 

radiation detector pulse trains with time-varying count rates,” 

Nuclear Instruments and Methods in Physics Research. A, vol. 

595, pp. 464-473, 2008. 
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