Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 18,2023

PX : Asymmetric two-step thermosiphon for the containment cooling of SMR

- 1. 개 요
- 2. Multi-step thermosiphon
- 3. Two-step Thermosiphon
- 4. PX 이론 및 검증 해석
- 5. 개념의 SMR 적용
- 6. 요 약

원자력안전기반연구소/ 원자로계통안전연구부

2023. 5. 18

이성재 : sjlee2@kaeri.re.kr

개요

[1] P. Dunn and D. A. Reay, "Heat pipes." Pergramon press, 1978.

[2] Amir Faghri, "Heat pipe science and technology." Taylor & Francis, 1995.

[3] B.Y. Tong, T.N. Wong and K.T. Ooi, "Closed-loop pulsating heat pipe," Applied Thermal Engineering, 21, pp. 1845-1862, 2001

02 Single-step & Multi-step Thermosiphon

Single & Multi Step Thermosiphon 열전달 성능 비교 열전달 해석을 위해 각 열원과 열침원에 대하여 Discrete 분포 * 각각 n 개의 열원과 열침원 set 모의 1) Thermosiphon은 포화상태 이하 유지 2) 동일한 압력조건 3) <u>지배 방정식을 각 Thermosiphon에 적용</u> M. Balance Eqn. : $f \frac{\rho}{2} v^2 = \oint \Delta p$ E. Balance Eqn. : $0 = \dot{m} \Delta h$ $\oint \Delta p_0 = g \big[(\rho_0^0 + \rho_0^1 + \dots \rho_0^{n-1}) - (\rho_0^1 + \rho_0^2 + \dots \rho_0^n) \big] \Delta y = g (\rho_0^0 - \rho_0^n) \Delta y$ **O-loop**: Single-step $\sum Q_0^i = m_0 \left[\Delta x_0^1 h_{fa,0} + \Delta x_0^2 h_{fa,0} + \dots \Delta x_0^n h_{fa,0} \right] = m_0 \sum \Delta x_0^i h_{fa,0}$ Thermosiphon X-loop : $\oint \Delta p_X = g[(\rho_X^0 - \rho_X^1) + (\rho_X^0 - \rho_X^1) + \dots + (\rho_X^0 - \rho_X^1)] \Delta y = ng(\rho_X^0 - \rho_X^1) \Delta y$ Multi-step Thermosiphon $\sum Q_X^i = \dot{m}_X \left[\Delta x_X^1 h_{fa,X} + \Delta x_O^2 h_{fa,X} + \cdots \Delta x_O^n h_{fa,X} \right] = \dot{m}_X \sum \Delta x_X^i h_{fa,X}$ Comparison of the circulation mass flow & heat transfer rate Single-step thermosiphon Multi-step thermosiphon Ratio Flow rate $\dot{m}_{o} = \left(\frac{2\bar{\rho}A^{2}}{f}g(\rho_{o}^{0} - \rho_{o}^{n})\Delta y\right)_{o}^{1/2} \qquad \dot{m}_{X} = \left(\frac{2\bar{\rho}A^{2}}{f}ng(\rho_{X}^{0} - \rho_{X}^{1})\Delta y\right)_{X}^{1/2}$ $\frac{\dot{m}_X}{\dot{m}_0} \approx n$ (\dot{m}) $\dot{m}_0 h_{f,g,0}$ n $\dot{m}_X h_{fa,X}$ $\frac{\sum \boldsymbol{Q}_X^i}{\sum \boldsymbol{Q}_O^i} \approx \boldsymbol{n}^2$ Total heat Transfer

if ρ_o^n , $\rho_x^1 = \rho_g$ and ρ_o^0 , $\rho_x^0 = \rho_l$

rate $(\sum Q^i)$

03 O-loop & X-loop 열교환 능력 비교

<u>n=2 경우</u>

- 한번 가열에 증기 건도가 동일한 x₀만큼 증가하는 조건에서 비교 (동일한 조건의 가열과 냉각)
- Homogeneous & Equilibrium Model(HEM) 조건에서 전산해석 수행

Loop pressure : 1 MPa		Total mass	Mass flow	Total energy	Top region	Specific		
		(kg)	(kg/s)	(J)	quality	volume (m ³ /kg)		
Heat transfer rate 200 kW (100 +100)	O-loop	1215.023	0.199	9.848E+08	0.500	0.006		
	X-loop	1220.094	0.198	9.523E+08	0.250	0.003		
	Ratio	1.004	0.998	0.967	0.501	0.498		
Heat transfer rate 380 kW (190+190)	O-loop	1189.466	0.200	9.656E+08	0.995	0.006		
	X-loop	1190.054	0.197	9.297E+08	0.504	0.003		
	Ratio	1.000	0.987	0.963	0.507	0.500		
Heat transfer rate 200 kW (100 +100) Heat transfer rate 380 kW (190+190)	O-loop X-loop Ratio O-loop X-loop Ratio	1215.023 1220.094 1.004 1189.466 1190.054 1.000	0.199 0.198 0.998 0.200 0.197 0.987	9.848E+08 9.523E+08 0.967 9.656E+08 9.297E+08 0.963	0.500 0.250 0.501 0.995 0.504 0.507	0. 0. 0. 0. 0.		

<u>"동일 열수력조건에서 Two-step 경우 Single-step에 비하여 열전달 능력은 2배, 체적은 1/2"</u>

03 O-loop & X-loop 열전달 특성 비교

n=2, volume ratio : 1 (X-loop / O-loop)

- 1. The ratio of circulation flow rate ≈ 2.0 , $\frac{m_X}{m_0} \approx n$
- 2. The ratio of max. heat transfer rate $\approx 4.0, \frac{\sum Q_X^i}{\sum Q_0^i} \approx n^2$

03 O-loop & X-loop 열전달 특성 비교

- 1. Volume
- 2. Heat transfer rate
- 3. Total mass
- 4. Circulation mass flow

- 1. Total Volume : 7 m³ (H \times W : 24 m \times 4 m)
- 2. Heat Transfer Rate : 380 kW
- 3. Total Mass : 1225 kg
- 4. Specific Volume : 0.0057

2. Pressure : 1.0 / 2.2 (MPa)

04 O-loop & X-loop 열수력 해석

• <u>Realistic Code Simulation (MARS code Ver. 1.5)</u>

- 1. 초기조건 : 1.0 MPa, 포화상태 물
- 2. 경계조건 : 각 열원(열침원) 출력은 150 kW (Total 300kW)

04 O-loop & X-loop 해석 결과 비교

<u>Realistic Simulation Results</u>

• 동일 초기 및 경계 조건에서 서서히 가열/냉각 (Total 300kW)

8

X-loop Instability 분석

40

2

-2

-3

-4

-5

40

Mass flow (kg/s)

Classification of flow instability.								
Class	Туре	Mechanism	Characteristics					
1. Static instabilities 1.1. Fundamental (or pure) static instabilities	1. Flow excursion or Ledinegg instability	$\frac{\partial \Delta p}{\partial G}\Big _{\text{int}} \le \frac{\partial \Delta p}{\partial G}\Big _{\text{ext}}$	Flow undergoes sudden. I large amplitude excursion I to a new, stable operating condition					
	2. Boiling crisis	Ineffective removal of heat from heated surface	Wall temperature excursion and flow oscillation					
1.2. Fundamental relaxation instability	1. Flow pattern tran- sition instability	Bubbly flow has less void but higher ΔP than that of annular flow	Cyclic flow pattern transi- tions and flow rate variations					
1.3. Compound relaxation instability	 Bumping, geysering, or chugging 	Periodic adjustment of metastable condi- tion, usually due to lack of nucleation sites	Period process of super-heat and violent evaporation with possible expulsion and refilling					
2. Dynamic instabilities 2.1. Fundamental (or pure) dynamic instabilities	1. Acoustic oscillations	Resonance of pressure waves	High frequencies (10–100 Hz) related to time required for pressure wave propaga- tion in system					
	2. Density wave oscillations	Delay and feedback effects in relationship between flow rate, density, and pressure drop	Low frequencies (1 Hz) re- lated to transit time of a continuity wave					
2.2. Compound dynamic instabilities	1. Thermal oscillations	Interaction of variable heat transfer coefficient with flow dynamics	Occurs in film boiling					
	2. BWR instability	Interaction of void re- activity coupling with flow dynamics and heat transfer	Strong only for a small fuel time constant and under low pressures					
	3. Parallel channel instability	Interaction among small number of parallel channels	Various modes of flow redistribution					
2.3. Compound dynamic instability as secondary phenomena	1. Pressure drop oscillations	Flow excursion initiates dynamic interaction be- tween channel and com- pressible volume	Very low frequency periodic process (0.1 Hz)					

J.A. Boure, A.E.Bergles and L.S.Tong, Review of two-phase flow instability, Nuclear Engineering and Design 25 (1973) 165-192

05 PX : Asymmetric Two-step Thermosiphon

1. X-loop에서의 심한 Pulsation 현상의 주된 원인은 중앙으로 부터의 Point Symmetric 한 기하학적 특성으로 예상됨 2. Pulsation 현상 제거을 위한 방법으로 asymmetric loop 구조 제안

05 O-loop & PX-loop 해석 결과 비교

11

05 O-loop / PX-loop 자연순환 해석 종합

<u>Realistic Simulation Results</u>

- Heat transfer rate range : 75kW ~ 500 kW
- O-loop max. heat transfer rate : 380 kW
- **PX-loop max. heat transfer rate : > 500 kW** ✓ 500 kW이상에서 코드 해석 어려움 발생

12

05 피동무한냉각(PX)의 SMR 격납용기 적용

- PX : Asymmetric Two-steps Thermosiphon
- Lower Steam Pressure & Temperature
- Internal RHRS

05 SMR 사고시 격납용기 냉각 적용

1. 새로운 개념의 자연순환 열전달 소개 : Multi-step thermosiphon

- Two-step thermosiphon (X-loop, PX-loop) 이론 연구
- 전산해석 검증 및 기존방식과 (O-loop) 비교 분석

2. PX-loop:

- SMR 격납용기 냉각에 적합
- 동일 체적, 최대 열전달 성능 비 (PX-loop/O-loop) ≈ 2~4
- 동일 열전달조건의 체적비 & 압력비 (PX-loop/O-loop) ≈ 1/2 ~ 1/4

PX : Passive Infinite Cooling (Asymmetric Two-step Thermosiphon)

PX 연구 목표

궁극적인 원자로 안전성 구축

✓ 비상전원 제거 – Diesel generator, battery 제거
 ✓ 비상계측 제거 – Signal line 제거
 ✓ 비상작동 제거 – EOP manual 제거
 ✓ 운전판단 제거 – Human error 제거

무인, 피동 무한 냉각 개념 도입

- 1. Perfect Passive Drive Mechanism
 - ✓ Use high potential thermal energy (LOCA 시 고에너지 방출)
- 2. High Heat Transfer Mechanism

✓ Static Pool Heat Transfer -> Dynamic Flow Heat Transfer

- 3. 자연재해 또는 외부충격 근원적 해결
 - ✓ 지하 또는 수중 설치

PX 연구 동기

<u>안전성관련 사고 분류</u>

기존 원자로 사고 분류		PX개념 사고 분류		
LOCA	Non LOCA	용기 내부 사고	용기 외부 사고	
SBLOCA LBLOCA	SLB FLB TLOF SGTR SBO	SBLOCA SLB FLB SGTR SBO		

PX유동 개념 CFD 해석

》 전산 수치해석(CFD)에 의한 χ 순환 냉각 개념 검증

