
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2023

Development of multipurpose DAQ system using ZYNQ-based digitizer for in 100 MeV
Linac and Beam lines at KOMAC

Young-Gi Song*, Jae-Ha Kim, Sung-Yun Cho, Seung-Ho Lee, Hyeok-Jung Kwon

Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute, Gyeongju 38180, Korea
*Corresponding author:ygsong@kaeri.re.kr

1. Introduction

In KOMAC, the High Power Radio Frequency (HPRF)

system comprises nine Klystrons and the RF system is
controlled by digital Low-Level RF (LLRF) control
system. The beam diagnostic system comprises devices
such as Beam Position Monitor (BPM), Beam Loss
Monitor (BLM), Beam Current Monitor (BCM), and
wire scanner. Oscilloscopes and high-resolution digital
equipment are utilized to measure the RF operation and
beam signals. To integrate these measurement devices
with the accelerator control system, a distinct interface
control system has been developed. To establish a more
efficient interface, a new platform has been adopted
based on the Zynq chip, enabling easy operation and
maintenance, as well as low cost and rapid development.
This paper details the development of a Data Acquisition
(DAQ) system, based on a Zynq chip and Analog to
Digital Converter (ADC), that can be embedded with
EPICS Input/Output Controller (IOC) for a large particle
accelerator.

2. DAQ configuration

The DAQ system utilizes the AD7606 from Analog

Devices, which has eight channels, with four channels
used for the DAQ system [1]. The input voltage range is
from 0V to 10V, and the resolution is 16 bits, with a LSB
(Least Significant Bit) of approximately 0.3mV. The
ADC cycle (1-4 channel read) has a minimum time of
1.25us (800KSps), which can be extended as desired, up
to 600us. The AC7010 module was used, which contains
Xilinx's XC7Z010 Zynq chip to reduce development
costs and time for circuit design and artwork [2]. The
module has about 100 GPIOs, allowing for the use of
external chips, such as the ADC, and does not have
extraneous functions like HDMI. The trigger input is
used as the ADC data RAM save trigger, and there is a
Zynq debug serial port, Ethernet port, and four-channel
digital output with TTL output. The TTL output is
utilized as a signal for comparing the Voltage Standing
Wave Ratio (VSWR) of the forward and pickup signals
in the RF waveform, or for comparing the set value of
the beam current signal and outputting the result.

3. DAQ system design

3.1 IP Configuration
The Zynq Programmable Logic (PL) is composed of

an AD7606 IP for controlling the ADC and I/O, a RAM,
an Advanced eXtensible Interface (AXI), and a Zynq

processor for the Processing System (PS). Figure 1
shows the IP block diagram. The Top Module for
creating the AD7606 IP connects the ADC, RAM, AXI,
and AC7010 GPIO for control.

Fig. 1. IP block diagram

The number of ADC data buffers to be stored in RAM

and the cycle is only controlled. Figure 2 describes the IP
timing diagram on (a) a schematic diagram and (b) a
measured timing signals. STADC operates at the set
cycle and controls Read and Idle through the Busy signal
generated by the AD7606.

(a) Schematic timing diagram

Fig. 2. (b) ADC measured timing signals

If STDAC (ADC Conversion) is set to High, ADC

operation commences, and the BUSY signal indicates the
progress of ADC conversion, after which the conversion
is completed, and BUSY is set to Low. The READ pin is
sequentially set to Low to transmit ADC data in 16-bit

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 18-19, 2023

parallel format. This process is repeated four times to
read all channels, followed by a wait time until the next
STDAC signal is set to High. The FPGA sets the ADC's
Read signal to Low to read four channels after ADC
Conversion is complete, with High and Low set as a
minimum of 10ns.

3.2 ADC Data Ram Save
Upon application of an external trigger, the ADC data

is stored in the RAM for a set size. This process starts
from the next cycle after the trigger is applied, and when
all storage is complete, an interrupt is generated as a
signal to the PS indicating the completion of the save
operation. The Dual Port Memory (DPBRAM) interface
assigns Port 0 for ADC data in from AD7606.v and Port
1 for ADC Data Out to PS. The RAM Size is 65536, and
both the RAM data width and RAM address width are 16
bits. To configure the RAM for storing ADC data, the
ce0 that activates Port 0 is always kept high, and we0 is
controlled only when writing to RAM. Port 1 is accessed
by the PS through AXI, and data is read by controlling
we0 and ce0. An AXI4-Lite interface has been
configured to communicate with the PS, and a total of 16
registers have been created, of which 10 are used. The
DAQ system has been synthesized using the AD7606 IP,
and ports have been established for controlling the ADC
and digital out output. The data in the registers
communicates with the Zynq-PS area through AXI
Interconnect.

3.3 ADC Data Read
With power supply to the DAQ system, the ADC starts

operating immediately and is configured to only set the
ADC cycle time. Real-time ADC data is continuously
updated to the Experimental Physics and Industrial
Control System (EPICS) IOC [3]. The Zynq's PL has a
dual-port RAM with 65,536 addresses, which can store
one ADC data and up to 16,383 data when storing four
channels. A high-level application program modifies the
size of ADC data to be stored in RAM. ADC cycle time
and ADC measurement time are as follows.
 × =

If the ADC cycle time is 1.25µs and 1600 ADCs are
stored in RAM, the accelerator driving data collection
time is performed for 2ms.

1.25µs ×1600 =2000µs=2ms

4. High level application

The EPICS base version R3.14.12.8 is used, and the
asyn module is used for AsynPortDriver [4]. waveProc
is used for analyzing waveform data from ADC data [5].
Since the Zynq board has an ARM-based CPU, a
toolchain is installed for cross-compiling and building
programs. When an interrupt occurs in the Zynq PL, the
asynPortDriver class definition in the asyn module is

referred to for processing I/O interrupt in the PS. When
an interrupt occurs, a signal is generated in the kernel
module, and the application catches the signal and calls
a waveform function to acquire waveform data. The
waveform function generates data and then calls a
callback function. Data read and write are carried out
using the connected pointer through memory mapping
with the address connected to AXI.

With the beam accelerator, the beam current was
measured, and the data measured in ADC was stored in
RAM, and PV was generated by the EPIS IOC waveform
record and waveProc record by interrupt. Figure 3 shows
the display of measurement data using Control System
Studio (CSS).

Fig. 3. User interface for beam current monitoring

5. Conclusion

To build a more efficient interface, a new platform

based on Zynq chips was adopted, and the design and
application development of Zynq chips and ADC
hardware was completed. Zynq has Application
Processor (AP) and FPGA as on chip, and it is possible
to build a compact and low power due to the the
advantage of linking CPU and FPGA. The developed
DAQ system was capable of low cost and fast
development, and stable operation was confirmed in the
test. In the future, Zynq-based DAQ system will replace
oscilloscopes and high-end digital equipment used to
measure beams and RF signals.

Acknowledgement

This work has been supported through KOMAC of
KAERI by the Korea government (MSIP).

REFERENCES

[1] Analog Devices, http://www.analog.com
[2] Zynq-7000 Technical Reference Manual,
http://docs.xilinx.com/v/u/en-US/ug585Zynq7000-TRM
[3] Experimental Physics and Industrial Control System
(EPICS). http://www.aps.anl.gov/epics/index.php
[4] asynDriver: Aysnchronous Driver Support.
http://www.aps.anl.gov/epics/modules/soft/asyn
[5] waveProc, https://epics.anl.gov/modules/waveProc

