Numerical study on the design parameters of a packed bed thermal energy storage system

Seong-Il Beak, Jeong-Won Han and Bum-Jin Chung*

Presenter : Seong-Il Beak

Kyung Hee University

KNS Spring Meeting May 17-19, 2023 Department of Nuclear Engineering Kyung Hee University

Introduction

- Renewable energy generation rate \uparrow , intermittency issue arises
- Thermal energy storage (TES) can be a key solution for grid stability problem
- TES is considered for flexible operation of NPPs

TES system using packed bed

- Thermocline thermal energy storage (TES)
 - ✓ Charging: hot fluid in \rightarrow cold fluid out
 - ✓ Discharging: cold fluid in \rightarrow hot fluid out
- Hot and cold fluid is separated by thermal stratification
 - ✓ Thermocline formation
- Packed bed thermal energy storage
 - ✓ Randomly packed solid filler in cylindrical tank
 - \checkmark Heat storage through convective heat transfer
 - ✓ Cost effective

Principle scheme of packed bed TES [Baeuerle, 2017]

Department of Nuclear Engineering

Kyung Hee University

Object of present study

- Parametric study of packed bed TES using numerical analysis
 - ✓ Numerical evaluation of thermal performance varying design parameter
 - Flow velocity (*u*) I.
 - II. Tank height (H)
 - III. Porosity (ε)
 - IV. Heat transfer fluid
- Provide basic data for packed bed TES system design

Kyung Hee University

Model description

Parameters of packed bed TES

Design parameters			
Parameters	Values		
Hear transfer fluid	Molten salt		
Solid filler	Quartzite rock		
Tank height [m]	6		
Tank diameter [m]	3		
Filer diameter [m]	0.01905		
Initial hot temperature [K]	663.15		
Initial cold temperature [K]	563.15		
Flow velocity [m/s]	0.001		
Porosity	0.22		

atom momente

- In this work, the discharging process was simulated and analyzed
- Distributors are installed near the tank's inlet and outlet to ensure uniform flow distribution

Parametric study

Test matrix of packed bed TES

Parameters	Values	
Flow velocity [m/s]	5×10 ⁻⁴ -3×10 ⁻³	
Tank height [m]	2–8	
Porosity	0.12–0.42	
	Molten salt	
Heat transfer fluid	Therminol-66	
	Liquid sodium	

- Varied parameters
 - I. Flow velocity (*u*)
 - II. Tank height (*H*)
 - III. Porosity (ϵ)
 - IV. Heat transfer fluid

Numerical method

- Simulation was performed by adopting the CFD code based on ANSYS Fluent
- Three-dimensional flow was simulated in transient mode
- Assumptions
 - I. Uniform flow of constant velocity is injected into the tank
 - II. Flow motion is laminar
 - III. Packed bed region is insulated (adiabatic condition)
 - IV. The properties of working fluid and solid filler are independent of temperature
- PISO algorithm is used for the pressure-velocity coupling
- Time step size is 1 s and residual is 10⁻⁴

Department of Nuclear Engineering

Kyung Hee University

Sensitivity analysis

- Since the case for 5.56×10^5 , the maximum relative error has decreased by 0.8 %
- The case for 1.04×10^6 , was adopted in consideration of the error rate and calculation time

Thermal performance indicator

• Thermocline thickness

• Energy efficiency

$$\eta = \frac{\int_{0}^{t_{dischar.}} \dot{m} \ C_{p,f} [T_{f,out}(t) - T_{cold}] dt}{\int_{0}^{t_{char.}} \dot{m} \ C_{p,f} [T_{hot} - T_{cold}] dt}$$
(3)

KNS Spring Meeting May 17-19, 2023

Results and discussion

Validation

- The numerical results were compared with the results of existing study
 - ✓ Average relative error = 2.1 %

Influence of flow velocity

Flow velocity [m/s]	Thermocline thickness [m]	Discharging time [h]	Energy efficiency
5×10 ⁻⁴	0.354	0.28	0.748
1×10 ⁻³	0.152	0.47	0.840
2×10 ⁻³	0.120	0.64	0.869
3×10-3	0.105	0.81	0.884

Results of study for flow velocity

H = 6 m, $\varepsilon = 0.22$, molten salt, discharging mode

- $u \uparrow$, thermocline thickness \downarrow , Efficiency \uparrow
 - \checkmark Heat transfer between the fluid and the solid filler was improved
 - \checkmark Residence time of the thermocline within the tank was shortened

Influence of tank height

Results of study for tank height			
Tank height [m]	Normalized thermocline thickness	Discharging time [h]	Energy efficiency
2	0.354	0.28	0.748
4	0.152	0.47	0.840
6	0.120	0.64	0.869
8	0.105	0.81	0.884

$u = 3 \times 10^{-3}$ m/s, $\varepsilon = 0.22$, molten salt, discharging mode

- Thermocline thickness normalized according to tank height
- $H\uparrow$, thermocline thickness \uparrow
 - \checkmark Expansion time of thermocline has increased
- $H\uparrow$, normalized thermocline thickness \downarrow , Efficiency \uparrow
 - ✓ Increase in storage capacity had a greater impact on efficiency

KNS Spring Meeting May 17-19, 2023

Influence of porosity

Results of study for porosity			
Porosity	Thermocline thickness [m]	Discharging time [h]	Energy efficiency
0.12	0.826	2.17	0.807
0.22	1.062	2.25	0.804
0.32	1.181	2.33	0.801
0.42	1.298	2.42	0.798

Results of study for porosity

$u = 3 \times 10^{-3}$ m/s, H = 6 m, molten salt, discharging mode

- $\varepsilon \uparrow$, thermocline thickness \uparrow
 - Reduced the heat transfer area of the solid filler and impaired the heat transfer between the fluid and solid filler
- Energy efficiency was similar in the all cases for porosity
 - \checkmark Area of the fluid by the porosity compensated for this

Influence of heat transfer fluid

-			
Heat transfer fluid	Thermocline thickness [m]	Discharging time [h]	Energy efficiency
Molten salt	1.179	2.25	0.796
Therminol-66	1.184	2.86	0.840
Liquid sodium	1.298	3.97	0.775

Results of study for HTF

 $u = 3 \times 10^{-3}$ m/s, H = 6 m, $\varepsilon = 0.22$, discharging mode

- Molten salt showed the smallest thermocline thickness
- Therminol-66 showed the best energy efficiency
- Liquid sodium is bad for packed bed TES system
 - \checkmark Low energy efficiency, long discharging time, high thermal conductivity

Conclusions and further studies

Conclusions

- Packed bed TES was simulated using numerical method and verified compared to results of existing study
- The influence of design parameters on packed bed TES was conducted
 - ✓ u ↑, thermocline thickness ↓, Efficiency ↑
 - ✓ H ↑, normalized thermocline thickness ↓, Efficiency ↑
 - ✓ ε ↑, thermocline thickness ↑

Further studies

- Parametric study for added the deign parameters
- Improved model for NPP system
- Effect of distributor on thermocline in TES

Thank you for attention.

