
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

Requirements Management for Design of NPPs using Graph Neural Networks

Byoungchan Han a, Byeong-hyeok Ha a, Byeongmun Ahn a, Tongkyu Park a, Sung-Kyun Zee a,

Jaeseok Yoo b, Young-Jin Oh b
aFNC Technology, Institute of Future Energy Technology, 46, Tapsil-ro,

Giheung-gu, Yongin-si, Gyeonggi-do, 17084, Republic of Korea
bKEPCO E&C, 269, Hyeoksin-ro, Gimcheon-si, Gyeongsangbuk-do, 39960, Republic of Korea

*Corresponding author: bchan007@fnctech.com

1. Introduction

The recent advances in deep learning are truly

groundbreaking. In the last decade, CNN-based models

optimized for analyzing grid-type data and RNN-based

models for effectively learning sequential data have

been studied. Moreover, the Transformer model, which

was released in 2017 [1] demonstrated remarkable

performance in natural language processing (NLP) at

the time by incorporating the mechanism of attention

that allows the model to learn which data to focus on,

and is still attracting public attention as it has expanded

into new machine learning fields outside of NLP such

as computer vision and image detection.

On the other hand, most deep learning models

studied thus far have the disadvantage of relying on a

specific data type. However, as data in the real world

becomes more complex and entangled, the need for data

analysis with a network structure has emerged. Since

these graph data were difficult to analyze using existing

deep learning models due to their lack of fixed structure

and sequential feature, graph neural network (GNN)

models have been actively researched

Graph data can also be applied to nuclear power plant

(NPP) design documents as each document is

associated with design requirements specified therein.

In addition, controlling these design documents

becomes more difficult as massive amounts of

documents are continuously produced and accumulated.

Therefore, we present the applicability of GNNs to NPP

design requirements to implement automatic

management system in this paper.

2. Background and preliminaries

In this section, we will outline the background of

graph neural networks and how their trained knowledge

is applied to specific tasks.

2.1. Graph convolutional network (GCN)

In deep learning, the convolution operation, which

integrates the products of local features and kernels, is

frequently used to aggregate and filter local features.

Convolutional neural network is one of the most well-

known artificial neural networks that uses convolutional

operations. It is widely used in image data analysis, as it

can effectively learn images by dividing them into small

local zones and aggregating local features. Likewise,

the goal of GCN is to extract the most important

features for a given task. It filters through the graph to

collect features from important nodes and edges [2].

Both CNN and GCN collect information of adjacent

data points from target pixels or nodes.

Training principle of GCN is to update the feature by

collecting information on the nodes connected to each

node. As the matrix multiplication between the feature

matrix and the weight matrix extracts features of the

next hidden layer, the 𝑘-th updated feature matrix (or

hidden layer) in which each row represents the feature

of each node can be expressed as follows:

𝑯𝑘+1 = 𝜎(𝑨𝑯𝑘𝑾𝑘) (1)

However, there are two types of issues with this

expression. First, nodes without self-loops do not reflect

their own features when the feature matrix is updated

because the elements of adjacency matrix

corresponding to such nodes are zero. Second, nodes

that have many neighbors have high values of feature

representations, while nodes with few neighbors have

low values. For higher-degree nodes, this phenomenon

can result in an exploding gradient problem, while for

lower-degree nodes, it can result in a vanishing gradient

problem.

The first issue is solved by assigning self-loops to all

nodes. In other words, GCN model substitutes 𝑨̃, which

allocates 1 to all diagonal elements of the adjacent

matrix 𝑨, for 𝑨 in expression (1). The second issue is

addressed by normalizing the aggregated features to the

degree of each node. Normalization can be achieved by

multiplying the inverse degree matrix and the adjacency

matrix of a graph. To summarize, feature matrix

expression is improved as follows.

𝑯𝑘+1 = 𝜎(𝑫−1𝑨̃𝑯𝑘𝑾𝑘) (2)

2.2. Graph attention network (GAT)

Unlike GCN’s feature matrix calculation by graph

convolution, GAT computes the feature matrix with a

concept called self-attention, which indicates the

importance and level of contribution of each

neighboring node to the embedding of a given node. [3]

The self-attention score of a neighbor node 𝑗 to the

given node 𝑖 , 𝛼𝑖,𝑗
𝑘 is defined as below. 𝒂𝑘 denotes

trainable weight and the operator ⊕ stands for vector

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

concatenation. Note that 𝑁𝑖 stands for the first-order

neighbors of node 𝑖 which includes node 𝑖 itself.

𝛼𝑖,𝑗
𝑘 =

exp⁡(LeakyReLU(𝒂𝑘
𝑇[𝑾𝑘𝒉𝑖

𝑘⊕𝑾𝑘𝒉𝑗
𝑘]))

∑ exp⁡(LeakyReLU(𝒂𝑘
𝑇[𝑾𝑘𝒉𝑖

𝑘⊕𝑾𝑘𝒉𝑟
𝑘]))𝑟∈𝑁𝑖

 (3)

The attention score calculated in expression (3)

determines the importance of each neighbor node, and

updates the input data as expression (4).

𝒉𝑖
𝑘+1 = 𝜎(∑ 𝛼𝑖,𝑗

𝑘 𝑾𝑘𝒉𝑗
𝑘

𝑗∈𝑁𝑖
) (4)

The most significant advantage of GAT is that it does

not necessitate an entire graph structure. In the case of

GCN, the node representation required adjacent matrix

A from the overall graph. As a result, GCN was

vulnerable not only to the computational cost but also to

the changes in the graph. On the other hand, GAT is

capable to obtain the node feature only with the

corresponding neighbors’ representations. Such

characteristic allows GAT to be applied for not only

transductive but also inductive problems by hiding

nodes and edges used in validation or test sets.

2.3. GraphSAGE

Although the previously introduced GCN is a

representative model of graph neural networks, it has

the fatal disadvantage of using the adjacent matrix and

the degree matrix as input. It implies that GCN is taking

information from the entire graph. Thus, GCN can only

make predictions on trained nodes and edges. However,

most graph data in real life are constantly changing (e.g.,

social network, viewing history in streaming service, e-

commerce activities). To overcome this limitation,

GraphSAGE, named after graph sampling and

aggregation, was proposed.

The key concept of GraphSAGE is the use of a

sampling technique and a new weighting method

instead of the traditional degree and norm methods

commonly used in aggregation. [4] GraphSAGE

randomly samples a set of neighbors of a fixed size for

aggregation, whereas the GCN model aggregates the

entire first-order neighbors to evaluate the targeted

node's embedding. As a result, GraphSAGE can use

neighbor’s features in the absence of graph structural

information.

3. Methods and results

In this paper, we propose to apply graph neural

network models to manage NPP design requirements.

To test the applicability of GNN, we conducted an

experiment to predict which design documents contain

arbitrary design requirements. There are 1,066 design

documents and 444,553 sentences to be used as input,

which were collected from the U.S. NRC website [5].

Each line contained in the document was separated by a

newline letter, and was regarded as a design

requirement. It was not used as input data if the number

of words in a line was less than ten or the proportion of

alphabet letters was less than 70%.

Graph data was constructed using three different

types of nodes, and two different types of edges. Nodes

were composed of documents, lines, and words. Edges

were set between document nodes and the line nodes

that comprise corresponding documents, as well as

between line nodes and the word nodes that comprise

respective lines. Graph was constructed as an

undirected graph.

All words are converted to their reflected forms with

the lemmatization approach so that words with the same

root can be considered as a single item. Then Sentence-

BERT [6] was used to evaluate the initial embeddings

of word nodes and line nodes. Document embeddings

were initialized by mean-pooling the line embeddings

that comprise the respective documents.

Table I: Model Parameters

GCN

number of layers 2

hidden layer size 48

output layer size 6

dropout rate 0.5

GAT

number of layers 2

number of heads 8

hidden layer size 8

output layer size 6

dropout rate 0.6

GraphSAGE

number of layers 2

hidden layer size 48

output layer size 6

dropout rate 0.5

To perform inductive learning, we first masked the

line nodes and linked edges in the test set during the

training phase. GCN and GraphSAGE were used to

compute the remaining node embeddings after masking.

The prediction task was then performed to estimate the

existence probability of missing links between the

masked line nodes and the document nodes. The link

prediction results are used in binary cross entropy loss

and are reflected in backpropagation process. Each

model’s hyperparameters are presented in Table I.

Fig. 1. Graph model of the design requirements data.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 18-19, 2023

First, we measured the accuracy of the model for 100

design documents and 63,134 sentences contained

therein. The maximum accuracies obtained were 0.7878

for GCN, 0.8077 for GraphSAGE, and 0.7908 for GAT.

Results are shown in Fig. 2. Experiments on all

documents were conducted only on GCN and

GraphSAGE, while GAT was not conducted in the

current study due to a lack of computing resources. Fig.

3 presents the performances of GCN and GraphSAGE

for all input data. Training and evaluation were carried

out for 100 epochs.

We chose the same number of connected and

unconnected node pairs at random for performance

evaluation. Models’ Accuracies were measured by

predicting whether or not given node pairs are

connected.

4. Conclusion

This work demonstrated the applicability of GNN

models to the NPP design requirements. Although the

GNN models only achieved 80% accuracy for 100

documents and 70% accuracy for 1,066 documents, we

believe there is a room for improvement because the

input text used in this experiment contains a number of

general statements rather than well-organized design

requirements.

In the future, we will focus on developing a GNN

model optimized for bi-partite graphs by testing models

that require huge computing resources such as GAT,

and implementing a design requirements management

system usable in the field by training model with actual

design data.

NOMENCLATURE

𝑨 Adjacency matrix.

𝒂𝑘 Trainable weight matrix regarding to

self-attention of 𝑘-th hidden layer.

𝛼𝑖,𝑗
𝑘 Self-attention score of the node 𝑗 to the

node 𝑖 in 𝑘-th hidden layer.

𝑫 Degree matrix.

𝑯𝑘 𝑘-th hidden layer.

𝒉𝑖
𝑘 Embedding of node 𝑖 contained in 𝑘-th

hidden layer.

LeakyReLU Non-linear function to perform a

threshold operation, where any input

value less than zero is multiplied by a

fixed scalar.

𝜎 Non-linear function (i.e., ReLU).

𝑾𝑘 Trainable weight matrix of of 𝑘-th

hidden layer.

ACKNOWLEDGMENTS

This research was supported by KEPCO Engineering

& Construction Company, Inc. (KEPCO E&C)

(No.TRS29).

REFERENCES

[1] A, Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all

you need, Advances in neural information processing systems,

Vol. 30, pp. 5998-6008, 2017.

[2] T. N. Kipf, M. Welling, Semi-supervised classification

with graph convolutional networks, arXiv preprint

arXiv:1609.02907, 2016.

[3] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P.

Lio, and Y. Bengio, Graph attention networks, arXiv preprint

arXiv:1710.10903, 2017.

[4] W. Hamilton, Z. Ying, and J. Leskovec, Inductive

representation learning on large graphs, Advances in neural

information processing systems, Vol. 30, 2017.

[5] U.S.NRC, https://www.nrc.gov.

[6] N. Reimers, and I. Gurevych, Sentence-bert: Sentence

embeddings using siamese bert-networks, arXiv preprint

arXiv:1908.10084, 2019.

Fig. 3. Accuracy of link prediction task for all input data.

Fig. 2. Accuracy of link prediction task for 100 documents.

