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1. Introduction 

 

The recent advances in deep learning are truly 

groundbreaking. In the last decade, CNN-based models 

optimized for analyzing grid-type data and RNN-based 

models for effectively learning sequential data have 

been studied. Moreover, the Transformer model, which 

was released in 2017 [1] demonstrated remarkable 

performance in natural language processing (NLP) at 

the time by incorporating the mechanism of attention 

that allows the model to learn which data to focus on, 

and is still attracting public attention as it has expanded 

into new machine learning fields outside of NLP such 

as computer vision and image detection. 

On the other hand, most deep learning models 

studied thus far have the disadvantage of relying on a 

specific data type. However, as data in the real world 

becomes more complex and entangled, the need for data 

analysis with a network structure has emerged. Since 

these graph data were difficult to analyze using existing 

deep learning models due to their lack of fixed structure 

and sequential feature, graph neural network (GNN) 

models have been actively researched 

Graph data can also be applied to nuclear power plant 

(NPP) design documents as each document is 

associated with design requirements specified therein. 

In addition, controlling these design documents 

becomes more difficult as massive amounts of 

documents are continuously produced and accumulated. 

Therefore, we present the applicability of GNNs to NPP 

design requirements to implement automatic 

management system in this paper. 

 

2. Background and preliminaries 

 

In this section, we will outline the background of 

graph neural networks and how their trained knowledge 

is applied to specific tasks. 

 

2.1. Graph convolutional network (GCN) 

 

In deep learning, the convolution operation, which 

integrates the products of local features and kernels, is 

frequently used to aggregate and filter local features. 

Convolutional neural network is one of the most well-

known artificial neural networks that uses convolutional 

operations. It is widely used in image data analysis, as it 

can effectively learn images by dividing them into small 

local zones and aggregating local features. Likewise, 

the goal of GCN is to extract the most important 

features for a given task. It filters through the graph to 

collect features from important nodes and edges [2]. 

Both CNN and GCN collect information of adjacent 

data points from target pixels or nodes. 

Training principle of GCN is to update the feature by 

collecting information on the nodes connected to each 

node. As the matrix multiplication between the feature 

matrix and the weight matrix extracts features of the 

next hidden layer, the 𝑘-th updated feature matrix (or 

hidden layer) in which each row represents the feature 

of each node can be expressed as follows: 

 
𝑯𝑘+1 = 𝜎(𝑨𝑯𝑘𝑾𝑘)     (1) 

 

However, there are two types of issues with this 

expression. First, nodes without self-loops do not reflect 

their own features when the feature matrix is updated 

because the elements of adjacency matrix 

corresponding to such nodes are zero. Second, nodes 

that have many neighbors have high values of feature 

representations, while nodes with few neighbors have 

low values. For higher-degree nodes, this phenomenon 

can result in an exploding gradient problem, while for 

lower-degree nodes, it can result in a vanishing gradient 

problem. 

The first issue is solved by assigning self-loops to all 

nodes. In other words, GCN model substitutes 𝑨̃, which 

allocates 1 to all diagonal elements of the adjacent 

matrix 𝑨, for 𝑨 in expression (1). The second issue is 

addressed by normalizing the aggregated features to the 

degree of each node. Normalization can be achieved by 

multiplying the inverse degree matrix and the adjacency 

matrix of a graph. To summarize, feature matrix 

expression is improved as follows. 

 

𝑯𝑘+1 = 𝜎(𝑫−1𝑨̃𝑯𝑘𝑾𝑘)    (2) 

 

2.2. Graph attention network (GAT) 

 

Unlike GCN’s feature matrix calculation by graph 

convolution, GAT computes the feature matrix with a 

concept called self-attention, which indicates the 

importance and level of contribution of each 

neighboring node to the embedding of a given node. [3] 

The self-attention score of a neighbor node 𝑗  to the 

given node 𝑖 , 𝛼𝑖,𝑗
𝑘  is defined as below. 𝒂𝑘 denotes 

trainable weight and the operator ⊕ stands for vector 
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concatenation. Note that 𝑁𝑖  stands for the first-order 

neighbors of node 𝑖 which includes node 𝑖 itself.  

 

𝛼𝑖,𝑗
𝑘 =

exp⁡(LeakyReLU(𝒂𝑘
𝑇[𝑾𝑘𝒉𝑖

𝑘⊕𝑾𝑘𝒉𝑗
𝑘]))

∑ exp⁡(LeakyReLU(𝒂𝑘
𝑇[𝑾𝑘𝒉𝑖

𝑘⊕𝑾𝑘𝒉𝑟
𝑘]))𝑟∈𝑁𝑖

  (3) 

 

The attention score calculated in expression (3) 

determines the importance of each neighbor node, and 

updates the input data as expression (4). 

 

𝒉𝑖
𝑘+1 = 𝜎(∑ 𝛼𝑖,𝑗

𝑘 𝑾𝑘𝒉𝑗
𝑘

𝑗∈𝑁𝑖
)    (4) 

 

The most significant advantage of GAT is that it does 

not necessitate an entire graph structure. In the case of 

GCN, the node representation required adjacent matrix 

A from the overall graph. As a result, GCN was 

vulnerable not only to the computational cost but also to 

the changes in the graph. On the other hand, GAT is 

capable to obtain the node feature only with the 

corresponding neighbors’ representations. Such 

characteristic allows GAT to be applied for not only 

transductive but also inductive problems by hiding 

nodes and edges used in validation or test sets. 

 

2.3. GraphSAGE 

 

Although the previously introduced GCN is a 

representative model of graph neural networks, it has 

the fatal disadvantage of using the adjacent matrix and 

the degree matrix as input. It implies that GCN is taking 

information from the entire graph. Thus, GCN can only 

make predictions on trained nodes and edges. However, 

most graph data in real life are constantly changing (e.g., 

social network, viewing history in streaming service, e-

commerce activities). To overcome this limitation, 

GraphSAGE, named after graph sampling and 

aggregation, was proposed.  

The key concept of GraphSAGE is the use of a 

sampling technique and a new weighting method 

instead of the traditional degree and norm methods 

commonly used in aggregation. [4] GraphSAGE 

randomly samples a set of neighbors of a fixed size for 

aggregation, whereas the GCN model aggregates the 

entire first-order neighbors to evaluate the targeted 

node's embedding. As a result, GraphSAGE can use 

neighbor’s features in the absence of graph structural 

information.  

 

3. Methods and results 

 

In this paper, we propose to apply graph neural 

network models to manage NPP design requirements. 

To test the applicability of GNN, we conducted an 

experiment to predict which design documents contain 

arbitrary design requirements. There are 1,066 design 

documents and 444,553 sentences to be used as input, 

which were collected from the U.S. NRC website [5]. 

Each line contained in the document was separated by a 

newline letter, and was regarded as a design 

requirement. It was not used as input data if the number 

of words in a line was less than ten or the proportion of 

alphabet letters was less than 70%.  

Graph data was constructed using three different 

types of nodes, and two different types of edges. Nodes 

were composed of documents, lines, and words. Edges 

were set between document nodes and the line nodes 

that comprise corresponding documents, as well as 

between line nodes and the word nodes that comprise 

respective lines. Graph was constructed as an 

undirected graph. 

 

 

All words are converted to their reflected forms with 

the lemmatization approach so that words with the same 

root can be considered as a single item. Then Sentence-

BERT [6] was used to evaluate the initial embeddings 

of word nodes and line nodes. Document embeddings 

were initialized by mean-pooling the line embeddings 

that comprise the respective documents.  

 

Table I: Model Parameters 

GCN 

number of layers 2 

hidden layer size 48 

output layer size 6 

dropout rate 0.5 

GAT 

number of layers 2 

number of heads 8 

hidden layer size 8 

output layer size 6 

dropout rate 0.6 

GraphSAGE 

number of layers 2 

hidden layer size 48 

output layer size 6 

dropout rate 0.5 

 

To perform inductive learning, we first masked the 

line nodes and linked edges in the test set during the 

training phase. GCN and GraphSAGE were used to 

compute the remaining node embeddings after masking. 

The prediction task was then performed to estimate the 

existence probability of missing links between the 

masked line nodes and the document nodes. The link 

prediction results are used in binary cross entropy loss 

and are reflected in backpropagation process. Each 

model’s hyperparameters are presented in Table I. 

Fig. 1. Graph model of the design requirements data.  
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First, we measured the accuracy of the model for 100 

design documents and 63,134 sentences contained 

therein. The maximum accuracies obtained were 0.7878 

for GCN, 0.8077 for GraphSAGE, and 0.7908 for GAT. 

Results are shown in Fig. 2. Experiments on all 

documents were conducted only on GCN and 

GraphSAGE, while GAT was not conducted in the 

current study due to a lack of computing resources. Fig. 

3 presents the performances of GCN and GraphSAGE 

for all input data. Training and evaluation were carried 

out for 100 epochs. 

 

We chose the same number of connected and 

unconnected node pairs at random for performance 

evaluation. Models’ Accuracies were measured by 

predicting whether or not given node pairs are 

connected.  

 

4. Conclusion 

 

This work demonstrated the applicability of GNN 

models to the NPP design requirements. Although the 

GNN models only achieved 80% accuracy for 100 

documents and 70% accuracy for 1,066 documents, we 

believe there is a room for improvement because the 

input text used in this experiment contains a number of 

general statements rather than well-organized design 

requirements. 

In the future, we will focus on developing a GNN 

model optimized for bi-partite graphs by testing models 

that require huge computing resources such as GAT, 

and implementing a design requirements management 

system usable in the field by training model with actual 

design data.  

 

NOMENCLATURE 

 

𝑨 Adjacency matrix. 

𝒂𝑘 Trainable weight matrix regarding to 

self-attention of 𝑘-th hidden layer. 

𝛼𝑖,𝑗
𝑘  Self-attention score of the node 𝑗 to the 

node 𝑖 in 𝑘-th hidden layer. 

𝑫 Degree matrix. 

𝑯𝑘 𝑘-th hidden layer. 

𝒉𝑖
𝑘 Embedding of node 𝑖 contained in 𝑘-th 

hidden layer. 

LeakyReLU Non-linear function to perform a 

threshold operation, where any input 

value less than zero is multiplied by a 

fixed scalar. 

𝜎 Non-linear function (i.e., ReLU). 

𝑾𝑘 Trainable weight matrix of of 𝑘-th 

hidden layer. 

 

ACKNOWLEDGMENTS 

 

This research was supported by KEPCO Engineering 

& Construction Company, Inc. (KEPCO E&C) 

(No.TRS29). 

 

REFERENCES 

 
[1] A, Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, 

A. N. Gomez, L. Kaiser, and I. Polosukhin, Attention is all 

you need, Advances in neural information processing systems, 

Vol. 30, pp. 5998-6008, 2017. 

[2] T. N. Kipf, M. Welling, Semi-supervised classification 

with graph convolutional networks, arXiv preprint 

arXiv:1609.02907, 2016. 

[3] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. 

Lio, and Y. Bengio, Graph attention networks, arXiv preprint 

arXiv:1710.10903, 2017. 

[4] W. Hamilton, Z. Ying, and J. Leskovec, Inductive 

representation learning on large graphs, Advances in neural 

information processing systems, Vol. 30, 2017. 

[5] U.S.NRC, https://www.nrc.gov. 

[6] N. Reimers, and I. Gurevych, Sentence-bert: Sentence 

embeddings using siamese bert-networks, arXiv preprint 

arXiv:1908.10084, 2019. 

Fig. 3. Accuracy of link prediction task for all input data. 

Fig. 2. Accuracy of link prediction task for 100 documents. 


