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1. Introduction 

Recently, nuclear safety regulations have been 

strengthened worldwide owing to the accident at the 

Fukushima nuclear power plant in Japan [1]. As part of 

this initiative, one of the target facilities is the HANARO 

reactor core, and studies are being conducted at this 

research reactor to improve its defense-in-depth (DID) 

[2-3]. DID is a safety philosophy that guides all nuclear 

facilities in their design, construction, inspection, 

operation, and regulation to ensure their safe and 

efficient operation. To enhance DID at HANARO, one 

approach being employed involves the use of CCTV 

image data analysis to support HANARO operators. Our 

study is to detect air bubbles in the HANARO reactor 

core. To achieve this, we analyzed the characteristics of 

air bubbles, generated a synthetic dataset [4], and utilized 

a Faster R-CNN deep learning model [5-6], that was 

optimized for bubble detection. 

 

2. Preliminary 

HANARO [7] is a multi-purpose research reactor 

designed as an open tank-in-pool type, with the inside of 

the reactor being monitored by a CCTV camera. One 

important aspect of this monitoring is the detection of air 

bubbles that may arise from cracks in the fuel cladding 

of the reactor core, which is one of the operator’s tasks. 

Monitoring air bubbles is an exhausting task due to their 

small size and the fact that their shape can vary 

depending on rotation, viewpoint, and occlusion. 

 

3. Dataset  

Images of the HANARO reactor core were obtained 

using a CCTV camera, and bubble characteristics were 

analyzed based on images of the process of discharging 

air inflow during the maintenance period. This analysis 

allowed us to create a synthetic dataset for bubble 

detection using a deep learning model. Utilizing image 

processing techniques, we generated a dataset by 

extracting bubble images from their respective 

backgrounds and inserting them into images. Due to the 

varying sizes and transparency levels of the bubbles, 

2,000 synthetic datasets were generated with diverse 

sizes, positions, angles, and transparency, as illustrated 

in Fig. 1.   

4. Methods 

The air bubble detection algorithm comprises two 

sequential steps, which are applied to every frame. The 

first step involves identifying regions of interest (ROIs) 

through background subtraction. The second step 

employs a deep learning-based object detection model. 

The utilization of a fixed CCTV camera enables this 

system to effectively detect air bubbles in the HANARO 

reactor core. 

 

Fig. 1. Air bubble image generated from synthetic 

datasets. 

4.1 Background subtraction  

As the CCTV camera installed around the core of the 

nucleus is fixed, the difference between the image 

containing the background and the moving air bubbles 

can be utilized during the image preprocessing stage. The 

background subtraction algorithm used is based on 

gaussian mixture models, which select appropriate 

gaussian distribution values for each pixel and are robust 

in removing background even when lighting conditions 

change, as shown in Fig 2. The resolution of the images 

to which the algorithm was applied is 1920×1080, with 

an average speed of over 80 frames. 

 

 4.2 Deep learning-based object detector for air bubbles  

Our algorithm was designed using deep learning-

based techniques for detecting air bubbles in images, as 

shown in Fig.3. To achieve this, the architecture of Faster 

R-CNN was optimized with hyperparameters to train on 

small size and transparent bubble objects. The algorithm 

consists of three parts: feature extraction, region proposal 

network, and multitask learning.  

The ResNet was used as the backbone feature 

extraction, and feature pyramid network (FPN) was used 

to improve the scale invariance of air bubble objects. The 

FPN is applied on the feature vector of ResNet-101 

having different resolutions (1/4, 1/8, 1/16, 1/32), and 

top-down approach with lateral connections. Next, we 

use a region proposal network (RPN) for end-to-end 

training to generate regions in air bubbles. The RPN 

operates on a feature map with five levels of FPN to 

generate anchor boxes and predict the presence of air 

bubbles within each anchor box. The anchor box used in 

Fig. 2. An algorithm was used to remove the background 

from the image, resulting in a black mask covering the 

background. 
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our algorithm is a bounding box with a predetermined 

ratio and size that is based on the size of the bubble object. 

The size of the bubbles in our dataset ranges mainly 

between 50 and 500 pixels. To accommodate this range, 

we adjusted the anchor box to have five different scale 

levels of 32, 64, 128, 256, and 512 pixels. Finally, the 

multi-task learning algorithm makes use of three inputs: 

the feature vector from FPN, proposal box from RPN, 

and ground truth boxes obtained from images. The 

feature maps generated by the FPN are selected 

depending on the region proposals generated by the RPN. 

A non-maximum suppression (NMS) algorithm is then 

used to select region proposals with high class scores. 

Following the selection process, the model is trained 

using multitask learning using equation (1). 

 
𝐿(𝑝, 𝑢, 𝑡𝑢 , 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 

𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡
𝑢 , 𝑣). 

(1) 

 

The log loss function is utilized by the 𝐿𝑐𝑙𝑠 function to 

classify air bubbles. The predicted class scores are 

denoted by 𝑝, while the ground truth class scores are 

denoted by 𝑢 . The 𝐿𝑙𝑜𝑐  function is used to predict the 

coordinates of the bounding box that surrounds the air 

bubble in the image. The predicted bounding box 

coordinates is represented by 𝑣, while the ground truth 

bounding box coordinates is represented by 𝑡𝑢. 

 

5. Experiments 

We evaluate the qualitative performance analysis of 

the air bubble detection model. We used a dataset of air 

bubbles produced during the maintenance period to 

generate both single and multiple bubbles within the 

HANARO reactor core, as shown in Fig 4. The two 

images were created by detecting air bubbles during 

HANARO reactor core maintenance. Columns from left 

to right represent single and multiple bubble detection 

results. 

 

6. Conclusion 

In this paper, we propose an image-based air bubble 

detection system in the HANARO reactor core. To 

address the issue of an insufficient air bubble dataset, the 

synthetic dataset was created and used to train a deep 

learning model optimized for detecting air bubbles in 

HANARO reactor core. More efforts will be made to 

generate synthetic data and obtain real-world test 

datasets from the HANARO reactor core. It is expected 

that these additional measures will improve the 

performance of the bubble detection model. In order to 

validate the efficacy of the bubble detection model, 

qualitative experiments will be conducted. 
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Fig.  3. Deep learning bubble detection model structural 

diagram 

Fig.  4. Examples of qualitative air bubble detection on 

the HANARO reactor core. Columns from left to right 

correspond to original image and image with detected 

bubbles. 


