KNS Spring Meeting 2023 Cyber Security Considerations for Technologies Intended in the Future SMR

Yoon Ki Choi, Kyung Jin Lee, Yeon Jun Choo, and Kiwhan Chung 2023. 5. 18.

CONTENTS

1. Introduction

2. Cyber Security Vulnerabilities

3. Cyber Security Considerations

4. Conclusions

5.Q&A

Introduction

1

Introduction

> Backgrounds

Considered Technologies

- Autonomous Operation
- Remote Control
- Load-Following Operation
- Modularization

Case Studies in the Current Industry

Cyber Security Vulnerability

> Objectives

Pre-examination of Cyber Security Vulnerabilities

Deriving Regulatory and Design Considerations

FNC Technology Co., Ltd

Autonomous Operation

> Reasons to Consider Autonomous Operation

- Reliable Control of Multiple Reactor Modules
- Reduction of the Operator's Burden

> Case Studies in the Current Industry

- Self-Driving Cars and Smart Factories
 - A Demonstration of the "Jeep Cherokee" Hacking in 2015
 - The Discovery of Hyundai Motor's Blue Link Vulnerability in 2017
 - Stuxnet Incident Discovered in 2010

> Cyber Security Vulnerability

- Using communication channels
- External malicious code
- Data and code Threats
- Access to the internal network of unauthorized devices

Remote Control

- > Reasons to Consider Remote Control
 - Efficient Role Distribution for Resident Operators

> Case Studies in the Current Industry

Jamming and Spoofing Attacks on Drone in 2016

> Cyber Security Vulnerability

- Hacking and Virus
- **Spoofing**
- Jamming
- **Sniffing**

Load-Following Operation

> Definition

An operation method that adjusts the electrical power of a generator in response to fluctuations in demand or power supply requests in the power system
 Diapped Load Following Operation

- Planned Load-Following Operation
- Frequency Control

> Reasons to Consider Load-Following Operation

Improvement of the Operating Flexibility of Nuclear Power Plants

Efficient Combination of Alternative Energy Sources

> Applications in the domestic Industry : N/A

> Cyber Security issues

- Network Connection with the EMS*
 - Unauthorized Access to the Network
 - System Data and Communication Data Leakage
 - Data Deletion and Destruction of System Data

*EMS: External Power Management System

Supply Chain

> Reasons to Consider Supply Chains

Increasement of the number of Vendors due to Modularity of SMR

Current Industrial Issues

SolarWinds Supply Chain AttackMITRE Report

> Cyber Security Vulnerability

- Malicious Code
- Replacement with Malicious Parts
- Intentional Change of Data
- Increasement of the number of Vendors Requiring Control and Management

Attack Identifier:	A4					
Target (Attack Type):	Hardware:		Firmware: Yes			
	Software:	Yes	Sys Information or Data:			
Description (Attack Act):	Malicious logic (e.g., a back-door Trojan) is programmed into software or microelectronics (e.g., FPGAs) during development or an update.					
Attack Vector:	An adversary with access privileges within the software or firmware configuration control system during coding and logic-bearing component development.					
Attack Origin:	A software or firmware p	rogramme	r during coding and integration.			
Attack Goal:	Disruption:	Yes	Disclosure:	Yes		
	Corruption:	Yes	Destruction:			
Attack Impact:	Can vary widely, dependi	ng on the o	apability of the malicious logic.			
References:	Based on CAPEC: Attack ID 441					
Threat:	A software or firmware programmer with access to the configuration control system can introduce malicious logic into software or microelectronics during coding and/or logic-bearing component development or update/maintenance					
Vulnerabilities:	The configuration control system is susceptible to the introduction of malicious logic into software or firmware/microelectronics during coding, integration, and/or logic-bearing component development or update/maintenance.					
	upuate/maintenance.					
Attack Points:	Program Office:		Software Developer:	Yes		
Attack Points:	1 1	Yes	Software Developer: Hardware Developer:	Yes		
Attack Points:	Program Office:			Yes		
Attack Points:	Program Office: Prime Contractor:	Yes	Hardware Developer:	Yes		
Attack Points: Applicable Life Cycle P	Program Office: Prime Contractor: Subcontractor: Integrator Facility:	Yes	Hardware Developer: Physical Flow:	Yes		
Applicable Life Cycle P	Program Office: Prime Contractor: Subcontractor: Integrator Facility:	Yes	Hardware Developer: Physical Flow:	Yes		
Applicable Life Cycle P N	Program Office: Prime Contractor: Subcontractor: Integrator Facility: hases:	Yes	Hardware Developer: Physical Flow:	Yes		
Applicable Life Cycle P M Technology Maturi	Program Office: Prime Contractor: Subcontractor: Integrator Facility: hases: lateriel Solution Analysis:	Yes	Hardware Developer: Physical Flow:	Yes		
Applicable Life Cycle P M Technology Matur: Engineering and Man	Program Office: Prime Contractor: Subcontractor: Integrator Facility: hases: lateriel Solution Analysis: ation and Risk Reduction:	Yes Yes	Hardware Developer: Physical Flow:	Yes		

MITRE Supply Chain Attack Pattern Template

Cyber Security Considerations

Cyber Security Considerations

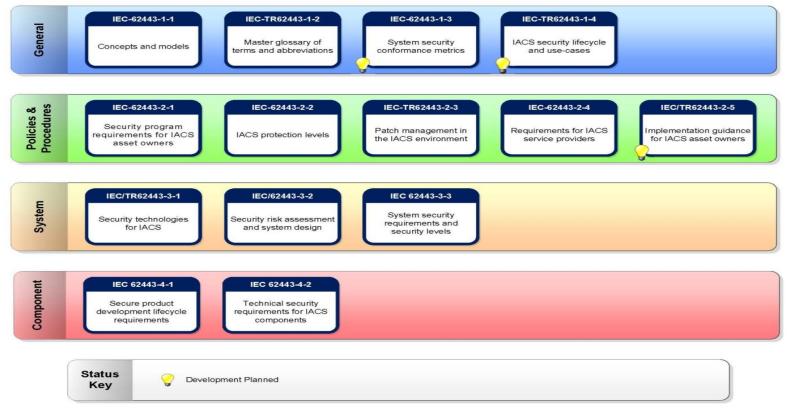
Autonomous Operation (1/2)

> Cyber Security Considerations for Autonomous Operation

Reference of Automotive and Smart Factory Security Standards NIST CSF System

Identify (식별)	Protect (보호)	Detect (감지)	Respond (대응)	Recovery (복구)
What processes and assets need protection?	Implement appropriate safeguards to ensure protection of the enterprise's assets	Implement appropriate mechanisms to identify the occurrence of cybersecurity Incident	Develop techniques to contain the impacts of cybersecurity events	Implement the appropriate processes to restore capabilities and services impaired due to cybersecurity events
CATEGORY	CATEGORY	CATEGORY	CATEGORY	CATEGORY
 Asset Management Business Environment Governance Risk Assessment Risk Management Strategy Supply Chain Risk Management 	 Identify & Manage Access Control Awareness and Training Data Security Information Protection Processes & Procedures Maintenance Protective Technologies 	 Anomalies and Events Security Continuous Monitoring Detection Processes 	 Response Planning Communications Analysis Mitigation Improvements 	Recovery PlanningImprovementCommunications

Cyber Security Considerations

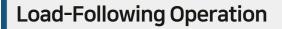


Autonomous Operation (2/2)

> Cyber Security Considerations for Autonomous Operation

Reference of Automotive and Smart Factory Security Standards

- ISA/IEC 62443
- Configuration of Four Groups : General, Policy and Procedures, Systems, Components


KNS Spring Meeting 2023 Cyber Security Considerations

Remote Control

- > Cyber Security Considerations for Remote Control
 - Securing the Reliability of the Component Supply Chain to Prevent Virus
 - Setting User Access Authority by Condition for Network Connection
 - Use Secure Communication Protocols & Encryption Algorithms to Ensure Authentication, Data Integrity and Confidentiality
 - Check Integrity of Important Information Stored in Devices and Systems
 - Constant Security Updates

KNS Spring Meeting 2023 Cyber Security Considerations

- Cyber Security Considerations for Load-Following Operation
 - Secure Local and Remote Access Methods
 - Setting User Access Authority by Condition for External Network Connection
 - Setting Communication Authentication Process from External Network
 - Check Whether Information Stored in Devices and Systems has been Tampered with

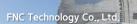
FNC Technology Co.

Prevention of Leakage of Stored Information

KNS Spring Meeting 2023

3

Cyber Security Considerations


FNC Technology Co., Ltd.

Supply Chain (1/4)

> Approach to Eliciting Supply Chain Considerations

Cyber Security Considerations

Supply Chain (2/4)

> Regulations for Current Nuclear Power Plants

NRC RG 5.71

Protection of Digital Computers, Communication Systems and Networks

NRC RG 1.152

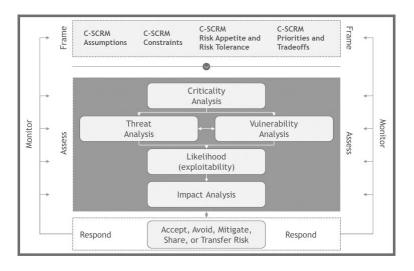
Standards of Computers Used in Safety Systems

IAEA TECDOC

- IAEA TECDOC 919
- IAEA TECDOC 1169

International Standards ISO/IEC 27036 ISO/IEC 20243

Cyber Security Considerations


Supply Chain (3/4)

> ICT Cyber Security for the Supply Chain

- Lack of Regulations on Current NPPs
- Active Introduction and Utilization of Advanced Supply Chain Management Measures

UN NIST CSF*

C-SCRM*

*CSF: Cyber Security Framework *C-SCRM: Cyber Supply Chain Risk Management

NIST C-SCRM Structure

Cyber Security Considerations

Supply Chain (4/4)

- > Cyber Security Considerations for the Future SMR
 - Analysis of Ecosystem
 - Cyber Security Management System
 - Cyber Attack Types and Vulnerabilities
 - Cyber Crisis Management Framework
 - Cyber Security Risk Self-Assessment Program
 - Software, Hardware, and Firmware Standards and Guidelines

FNC Technology Co., l

Conclusions

Conclusions

Considered Technologies

- Autonomous Operation
- Remote Control
- Load-Following Operation
- Modularization

Cyber Security Vulnerabilities

- External malicious code
- Unauthorized Access to the Network
- Spoofing, Jamming and Sniffing
- System Data and Communication Data Leakage
- Replacement with Malicious Parts

> Cyber Security Considerations

A Framework for Identifying and Addressing Cyber Security Threats in terms of Design or Regulation of Future SMR

FNC Technology Co., Lto

5 Q&A

♀ 미래와도전 본사

16954경기도용인시기흥구흥덕1로13,32층 (영덕동,흥덕아이티밸리타워동) +82-31-8065-5114

♀ 대전 지사

대전광역시 유성구 대덕대로 593, 10층 1004-1호 (도룡동, 대덕테크비즈센터) +82-42-867-5114

♀ 미래에너지기술연구소 본관

경기도 용인시 기흥구 탑실로 46, 미래에너지기술연구소 본관 +82-31-8005-5618

♥ UAE 아부다비 지사

#2335, Sky Tower, Al Reem Island PO Box 5101041, Abu Dhabi, UAE +971-2-406-9719

♀ 미래에너지기술연구소 신관

경기도용인시 기흥구 탑실로 44, 미래에너지기술연구소 신관 +82-31-8005-8236

THANK YOU

FNC TECHNOLOGY CO., LTD.

1917

TYNY WHERE A REAL HILL

FNC