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1. Introduction 
 
Recent technical standards [1,2] specifies that seismic 

load shall be simultaneously excited in three directions, 
when performing nonlinear seismic response analysis of 
nuclear power plant structures with seismic isolation. 
This is because the linear combination may be useless in 
the non-linear analysis. Since the nonlinearity of seismic 
isolation system must be considered, the seismic 
response analysis is generally performed by the direct 
integration method in time domain. However, it may be 
difficult to apply the proportional damping matrix under 
simultaneous three-directional excitations.  

A determination of accurate damping properties of 
the structural system has long been a challenging 
problem to many researchers. The damping generally 
includes a phenomenon that vibration is absorbed or 
reduced over time while energy is dissipated to an 
external system. The conclusions of most researchers in 
the past regarding application of damping to the 
dynamic analysis were limited to simple formulas with a 
damping value determined by empirical judgement or 
experimental result. The damping ratio which is used in 
dynamic analyses varies with the type of structural 
material, the type of structure, and the level of load. 
Guidelines for the damping ratio are presented in 
various technical standards according to the stress level 
as well as material and structure type. The reason why it 
is difficult to accurately evaluate the damping of a 
structural system is due to the limitations of classical 
mechanics, which does not deal with the micro regions 
but  the macro properties (mass and stiffness) of the 
structural system. 

Rayleigh proposed that the damping could be 
constructed as a linear summation of stiffness and mass 
matrices multiplied by proportional coefficients. The 
coefficients( ka ) correspond to a weight of the natural 
vibration mode of the structure. If n-modes are applied 
in N-degrees of freedom(DOF) system, i-th modal 
damping ratio( ix ) can be expressed with a power 

expansion series as like 
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modal damping ratio converges to an accurate value as 
the number of modes to be applied increase[3]. 

The proportional damping matrix usually considers 
two modes ( ,i j ) with high mass participation in the 
direct integration method. The pair of proportional 
coefficients( ,a b ) can be obtained from two dominant 
modes ( ,i jw w ) and two modal damping ratio ( ,i jx x ) 
shown in Eq.-1.  
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Therefore the proportional damping matrix of the 
global structural system is simply obtained by 
multiplying the mass( [ ]M ) and stiffness matrix( [ ]K ) by 
two coefficients, as like [ ] [ ] [ ]C M Ka b= + . As 
mentioned above, it may be difficult to determine the 
proportional coefficients, due to simultaneous excitation 
in three directions and two-way system of the structure. 
The two-way system of a structure means that it is 
flexible in the horizontal direction while it is stiff in the 
gravity direction. Hence, vibration modes corresponding 
to the three directions must be considered. Eq.-1 is 
insufficient to satisfy the three directional condition 
with two proportional coefficients. 

There are still no research works or specified 
guidelines of the technical standards for the proportional 
damping, when simultaneously excited in three 
directions. New methodology for calculating the multi-
directional proportional damping matrix considering 
simultaneous multi-excitation is proposed in this paper. 

 
2. Methodology 

 
The proposed methodology for the calculation of 

proportional damping is similar to the formulation of the 
finite element method, and is derived  for a general use. 
In addition, the derivation process considers the 
orthogonal characteristic of the constitutive equations of 
material. The following initial assumptions are 
necessary for this formulation. 

- The governing equation is partially modified 
through the derivation. The proposed governing 
equation is inversely inferred from the damping 
force({ }( )dF t ) of the discrete system.  

- The proportional coefficients for each direction 
consider only two modes and modal damping ratio.  

- The multi-directional proportional coefficients 
depend on the DOF number in a structure, and 
number of the loading directions. 

- The proposed proportional damping is expressed as 
an individual finite element. 

Firstly, the equation of motion of the discrete system 
is inversely estimated to derive the governing equation, 
then a new proportional damping matrix is formulated. 
The proposed equation of motion and force equilibrium 
equation in time domain are as follows. 
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Where, ( )RCé ùë û is the expression of the (Rayleigh) 
proportional damping matrix by dividing the mass 
damping term ( [ ]Ca ) and the stiffness damping term 

( Cbé ùë û ), which also consists of a linear combination 

( [ ]( )RC C Ca bé ù é ù= + ë ûë û  ). { }( )aF t is inertia force, { }( )dF t  is 

the damping force, { }( )sF t  is the stiffness force, and 

{ }( )eF t  is the external force. Especially the damping 

force is defined separately as { } { } { }( ) ( ) ( )dF t F t F ta b= + . 
If the above equation of motion (Eq.-2) is the result of 
variation on the governing equation, the governing 
equation in the solid state can be reconstructed in vector 
form as follows. 

[ ]{ } { } { } { } { } { }( ) ( ),R RL b u us s + = r + a s = s + b s&& & &   (Eq.-3) 

Where, { }s&  is the flow stress vector. r  is unit mass 
and { }u&& , { }u&  are the acceleration and velocity vectors 
respectively. Lsé ùë û  is a differential operator. The stress 

vector ({ }( )Rs ) is re-expressed as follows. 

{ } [ ][ ]{ } { }( )R D B u D B ub é ùé ùs = + ë û ë û
&        (Eq.-4) 

where Dbé ùë û  is an isotropic damped constant matrix, 

and Bé ùë û
&  is a flow strain matrix. Strain rate refers to the 

time-dependent gradient of strain. Dbé ùë û  is expressed as 
the product of the coefficient( b ) of stiffness and the 
elastic material matrix( [ ]D ). And assuming that Dbé ùë û  is 
a symmetric and isotropic material, it can be expressed 
as 
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   (Eq.-5) 

The indices(i,j) indicate the direction in the 
proportional coefficient ijb  of stiffness. Using the finite 
element formulation procedure, the proportional 
damping matrix ( ( )R e

Cé ùë û  ) of the unit element( e ) can be 
obtained as follow. 
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Bé ùë û  is the strain matrix for the element displacement 
vector, and dV denotes the unit volume ( 1 2 3dx dx dx ).The 

proportional damping matrix ( [ ]eCa ) of the mass is also 
derived in the unit element. In the right term of Eq.-3, 

{ }ura &  is the internal force generated by the damping 
force ( { }( )F ta ) by the mass. The proportional 
coefficient matrix [ ]a  of mass is also derived as below. 
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          (Eq.-7) 

The damping matrix ( [ ]eCa ) of mass is easily 
formulated as follows. 

[ ] [ ] [ ][ ]T

V
C N N dVa r a= ò        (Eq.-8) 

Where, [ ]N  is the matrix of shape function.  Finally 
the damping force obtained by the proposed 
proportional damping matrix is expressed as follows. 
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The verification of the proposed methodology can be 

seen through numerical analyses. 
 

3. Conclusions 
 

In this paper, a multi-directional proportional 
damping matrix calculation methodology was presented. 
In addition, to verify this methodology, a linear or non-
linear seismic response analyses was performed with 
parametric studies. The summary and conclusions are  
as follows. 

- The current proportional damping cannot reflect 
the characteristics of two-way structural system, 
when simultaneously excitation in three directions. 

- A new multi-proportional damping method is 
presented. The governing equations were corrected 
through several assumptions. The derivation 
process is similar to the formalization process of 
the finite element method. 

- The proposed proportional damping was verified 
through various numerical analyses. The 
disadvantages of the current proportional damping 
matrix can be overcome. 

The authors will show the results using the proposed 
methodology in the upcoming presentation.  
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