
 We used a Ce:GPS scintillator (3×3×10mm3) coupled with a 19-mm diameter Hamamatsu 

R3991A-07 photomultiplier tube (PMT) to detect gamma rays. 

 The PMT was supplied with a voltage of 1700V, and its anode signal was sent to a charge sensitive 

preamplifier, which was then shaped/amplified and digitized using a high speed DT5730 digitizer 

(500 MS/s, 14-bit resolution, CAEN). 

 We measured 137Cs, 57Co, 133Ba radiation sources and collected pulses while changing the 

temperature at 25 ℃, 50 ℃, 75 ℃, 100 ℃, 125 ℃, and 150 ℃. 
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INTRODUCTION 

 In severe accidents at nuclear power plants, identifying radioactive isotopes emitted from a 

nuclear reactor can play an important role in understanding the progression of the 

accident. 

 However, the high temperature environment surrounding a nuclear reactor can greatly 

influence the performance of radiation measurement systems. [1] 

 Additionally, the degradation of a radiation detector's output due to high temperatures 

can have a devastating effect on nuclide identification algorithms, which are based on the 

location of photopeaks in the spectrum. 

 

MATERIAL AND METHODS 

RESULTS 

DISCUSSION & CONCLUSION 
 We proposed a deep learning model capable of identifying radionuclides irrespective of 

temperature variations. 

 The proposed deep learning model demonstrates a high level of accuracy in identifying 

radionuclides, even when temperature fluctuations are present. 

 In future research, we will employ techniques such as CNN, MCNP4 to enhance the nuclide 

identification algorithm [3]. 

 Moreover, we aim to assess the nuclide identification capabilities of the trained model on a 

more extensive range of nuclides. 
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Fig. 1. (a) Schematic diagram and (b) experimental setup  for collecting radiation measurement 

data at high temperature. (c) Front-end circuit and DAQ system for this experiment. 

Gamma-ray spectrum measurements 

Architecture of deep neural network (DNN) 

• The architecture used in this study can be summarized as follows. 

 1) Configuration : Five layers and one Softmax layer (fully connected) 

 2) Activation function for hidden layers : ReLU 

 3) Optimizer : Adam optimizer (Adaptive Moment Estimation) 

 4) Learning rate : 0.001 

 5) Loss function : Categorical cross-entropy loss function 

• The hyperparameters listed above are commonly used in machine learning and optimized to 

improve performance.[2] 

 

Fig. 2. Measured 137Cs spectra at temperatures of 25 ℃, 50 ℃, 75 ℃, 100 ℃, 125 ℃, and 150 ℃. 

Training and testing dataset 

 The dataset used for the deep learning model was divided into seven classes to identify the 

three types of radiation sources, as indicated in Table Ⅰ. 

 Classes 0-2 each consisted of 1,200 gamma-ray spectra generated using 100,000 pulses 

measured for one source at the same temperature. 

 Of these, 1,000 spectra were designated as the training dataset , while the remaining 200 

spectra were designated at the test dataset. 

 For classes 3-6, the spectra were created by mixing 10,000 pulses randomly selected from the 

measured pulses for each source at the same temperature, ensuring that the proportion of 

pulses from any one source was at least 20%. 

 To verify the temperature dependency of the deep learning model in identifying nuclides at 

untrained temperatures, the spectra obtained at 75 ℃ and 100 ℃ were used as only test 

datasets. 

 Additionally, to account for temperature variations, linear interpolation was employed, and the 

interpolation ratio was determined based on the positions of the photopeaks. 

 

MATERIAL AND METHODS 

 The shifts and changes in photopeaks can be observed in the spectra as the temperature 

varies, as shown in Fig. 2. 

 The trained deep learning model was able to identify nuclides with high accuracy 

regardless of temperature, from spectra obtained at 25 ℃, 50 ℃, 100 ℃, and 150 ℃. 

 Furthermore, the trained deep learning model could identify radionuclides from spectra obtained 

at 75 ℃, and 125 ℃, which were not used for training the deep learning model, with an 

accuracy of  96% and 85.2%, respectively. 

 Upon implementing linear interpolation, the accuracy improved to 100% and 91.7% at 75 ℃, 

and 125 ℃, respectively, as indicated in Table Ⅱ. 

 

Goal of This Study 

 Proposal of a deep learning-based radionuclide identification which can identify nuclear 

isotopes even with temperature fluctuations. 

Class Number Gamma-ray Sources 

0 137Cs 

1 57Co 

2 133Ba 

3 137Cs, 57Co 

4 137Cs, 133Ba 

5 57Co, 133Ba 

6 137Cs, 57Co, and 133Ba  

Table Ⅰ. Dataset used for deep learning 

Temperature Accuracy Accuracy after interpolation 

25 ℃ 100% 100% 

50 ℃ 100% 100% 

75 ℃ 96% 100% 

100 ℃ 100% 100% 

125 ℃ 85.2% 91.7% 

150 ℃ 100% 100% 

ALL 96.9% 98.6% 

Table Ⅱ. Classification accuracy by temperature 

25℃ 
100℃ 

150℃ 


