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1. Introduction 

 
In severe accidents at nuclear power plants, 

identifying radioactive isotopes emitted from a nuclear 

reactor can play an important role in understanding the 

progression of the accident. However, the high 

temperature environment surrounding a nuclear reactor 

can greatly influence the performance of radiation 

measurement systems. Additionally, the degradation of 

a radiation detector's output due to high temperatures 

can have a devastating effect on nuclide identification 

algorithms, which are based on the location of 

photopeaks in the spectrum.  

In this study, we propose a deep learning-based 

radionuclide identification algorithm that can identify 

nuclear isotopes even with temperature fluctuations. To 

obtain radiation measurement data at high temperatures, 

we fabricated a radiation detector using a ruggedized 

PMT and Ce:GPS scintillator, which shows promising 

performance in high-temperature environments. Our 

proposed deep learning architecture consists of five 

hidden layers and one fully connected layer. The 

accuracy of the proposed radionuclide identification 

algorithm was verified using radiation sources of 137Cs, 
57Co, and 133Ba in the temperature range of 20℃ to 

150℃. 

 

2. Materials and method 

 

2.1 Gamma-ray spectrum measurements. 

We used a Ce:GPS scintillator (3×3×20 mm3, 

OXIDE Corporation, Japan) coupled with a 19-mm-

diameter Hamamatsu R3991A-07 photomultiplier tube 

(PMT) to detect gamma rays. The PMT was supplied 

with a voltage of 1500 V, and its anode signal was sent 

to a charge-sensitive preamplifier, which was then 

shaped/amplified and digitized using a high-speed 

DT5730 digitizer (500 MS/s, 14-bit resolution, CAEN). 

To obtain the gamma-ray spectra, we measured the 
137Cs (2.79 ± 0.07 MBq), 57Co (2.83 ± 0.07 kBq), and 
133Ba (540.52 ± 13.51 kBq) check sources and collected 

100,000 pulses for each source while changing the 

temperature at 20℃, 50℃, 75℃, 100℃, and 150℃. 

Temperature measurements were taken using a long 

thermocouple probe inserted into the furnace as shown 

in Figure 1. Prior to each measurement, the scintillation 

crystal and PMT were allowed to stabilize for at least 

30 minutes in the furnace. Optical compounds such as 

optical grease and epoxy were not applied between the 

scintillation crystal and PMT glass to avoid their 

properties changing due to heat.  

 

 

 
Fig. 1. (a) Schematic diagram for collecting radiation 

measurement data at high temperature. (b) The configuration 

of radiation detector, thermocouple, radiation source, and 

furnace. (c) The configuration of Charge sensitive preamplifer, 

High voltage supply, Digitizer and Console. 

 

2.2 Training and Testing Dataset 

To identify the three types of radiation sources in this 

experiment, the dataset used for the deep learning 

model was divided into seven classes, as indicated in 

Table 1. Classes 0-2 consisted of 1200 gamma ray 

spectra generated using 100,000 pulses measured for 

one source at the same temperature. Of these, 1000 

spectra were designated as the training dataset, while 

the remaining 200 spectra were designated as the test 

dataset. 

For classes 3-6, the spectra were created by mixing 

10,000 pulses randomly selected from the measured 

pulses for each source at the same temperature, 

ensuring that the proportion of pulses from any one 

source was at least 20%. For instance, in class 3, at least 

2000 of the 10,000 pulses in a spectrum originated from 

measuring 137Cs. 

Furthermore, to verify the temperature dependency of 

the deep learning model that could identify nuclides at 

temperatures for which it was not trained, the spectra 

obtained at 75℃ were used as only test datasets. 

Consequently, each class comprised 4000 spectra for 

training (25℃, 50℃, 100℃, and 150℃) and 1000 

spectra for testing (25℃, 50℃, 100℃, 150℃, and 

75℃). 
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Table I: Dataset used for deep learning 

Class Number Gamma-ray Sources 

0 137Cs 

1 57Co 

2 133Ba 

3 137Cs, 57Co 

4 137Cs, 133Ba 

5 57Co, 133Ba 

6 137Cs, 57Co, and 133Ba  

 

 
Fig. 2. Flowchart of the radionuclide identification base on 

Deep Neural Network. 

 

2.3 Architecture of Deep Neural Network (DNN) 

The DNN utilized in this study consisted of five 

stacked hidden layers and one Softmax layer, which can 

be shown in the flowchart illustrated in Figure. 2. The 

rectified linear unit (ReLU) served as the activation 

function for the five stacked hidden layers, each of 

which comprise 2000, 1500, 1000, 500, and 100 nodes. 

The output of the Softmax layer was used to assess the 

classification outcomes, and each node was fully 

connected. The architecture used in this study can be 

summarized as follows. 

1) Configuration: Five layers and one Softmax layer 

(fully connected) 

2) Activation Function for Hidden Layers: ReLU. 

3) Optimizer: Adam optimizer (Adaptive Moment 

Estimation). 

4) Learning Rate: 0.001. 

To overcome the flaws of the traditional stochastic 

gradient descent technique, the Adam optimizer was 

employed as an optimization method. 

In addition to the architecture of the DNN, the type of 

loss function utilized in this study is the categorical 

cross-entropy loss function. This loss function is 

commonly used for multi-class classification problems, 

where the goal is to minimize the difference between 

the predicted class probabilities and the true class 

probabilities. 

 

3. Results and Discussion 

 

As shown in Figure 3, it could be observed that shifts 

and changes in photopeaks occurred in the spectra as 

the temperature changed. These shifts could potentially 

have a negative impact on the identification of 

radionuclides. The spectra that contained these shifted 

photopeaks were utilized to train a deep learning model.  

 
Fig. 3. 137Cs spectra at temperature of 20℃, 50℃, 75℃, 

100℃, and 150℃. 

 

 
Fig. 4. Confusion matrix with accuracy of 99.11% for whole 

test dataset. 

 

Table Ⅱ: Classification accuracy by temperature. 

Temperature Accuracy 

20°C 100% 

50°C 99.86% 

75°C 95.93% 

100°C 100%% 

150°C 99.79% 

All 99.11% 

 

The trained deep learning model could identify all 

classes with a high accuracy of almost 100%, as 

evidenced in Figure 4. Notably, the trained deep 

learning model was able to identify nuclides with high 

accuracy regardless of temperature, from spectra 

obtained at 20°C, 50°C, 100°C, and 150°C. 

Furthermore, the trained deep learning model could 

identify radionuclide from spectra obtained at 75°C, 

which was not used for the train of the deep learning 

model, with an accuracy of 95.93% as shown in Table 2. 

This finding validates that our suggested deep learning 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 18-19, 2023 

 

 
model can accurately identify nuclides, regardless of 

temperature fluctuations. 

 

4. Conclusion 

 

In this study, we proposed a deep learning model 

capable of identifying radionuclides irrespective of 

temperature variations. The proposed deep learning 

model exhibits high accuracy in identifying 

radionuclides, even when there are fluctuations in 

temperature. The proposed deep learning model 

demonstrated a 95.93% accuracy in identifying 

radionuclides with spectra obtained at temperatures 

which was not used for the training set. Future research 

will employ techniques such as interpolation to enhance 

the nuclide identification algorithm [3]. Additionally, 

we will assess the nuclide identification capabilities of 

the trained model on a more extensive range of nuclides. 

 

Acknowledgement 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (Ministry of Science and ICT) (RS-2022-

00165164, NRF-2023R1A2C2007545). This work was 

supported by Korea Institute of Energy Technology 

Evaluation and Planning (KETEP) and the Ministry of 

Trade, Industry & Energy (MOTIE) of the Republic of 

Korea (20214000000070). 

 

REFERENCES 

 
[1] Chanho Kim, Dongyoung Kim, Yeeun Lee, Chansun Park, 

Muhammad Nasir Ullah, Duckhyun Kim, Inyong Kwon, Seop 

Hur, Jung-Yeol Yeom, “Radiation resistance and temperature 

dependence of Ce:GPS scintillation crystal”, Radiation 

Physics and Chemistry, p. 183, 2021. 

[2] Dongseong Shin, Jinsuk Oh, Chang-Hwoi Kim, and 

Hyeonmin Kim, Inyong Kwon, “Preprocessing Energy 

Intervals on Spectrum for Real-Time Radionuclide 

Identification”, IEEE TRANSACTIONS ON NUCLEAR 

SCIENCE, VOL. 68, NO. 8, AUGUST 2021. 

[3] Jinhwan Kim, Kyung Take Lim, Junhyeok Kim, Chang-

jong Kim, Byoungil Jeon, Kyeongjin Park, Giyoon Kim, 

Hojik Kim, Gyuseong Cho, “Quantitative analysis of NaI(Tl) 

gamma-ray spectrometry using an artificial neural network”, 

Nuclear Inst. And Methods in Physics Research, A 944, 2019. 


