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1. Introduction 

 
Nuclear Power Plants (NPPs) have Abnormal 

Operating Procedures (AOPs) to prepare for abnormal 

operating situations. When abnormal operating 

situations occur, the operators select the prepared AOPs 

and perform the mitigation actions to return to normal 

operating conditions. However, there are more than 200 

different AOPs, and the operators have to check the 

symptom requirements listed in each AOP in order to 

select one of them. This means selecting the optimal 

AOP that satisfies the symptom requirements while 

checking for rapidly changing NPP variables in 

abnormal operating situations. In addition, the operators 

have to perform this process quickly and accurately in 

order to quickly return to normal operating conditions. 

This process can also increase the possibility of human 

error due to the psychological stress on the operators. 

To reduce the possibility of the human errors, studies 

are being conducted using Artificial Intelligence (AI). 

For example, if the AI can recommend the optimal AOP 

to the operators, it can reduce the possibility of human 

error. However, it is unclear when this AI-based optimal 

AOP recommendation system will be applied to NPPs. 

This is related to the problem known as the black box 

characteristic of AI. This refers to situations where the 

AI does not provide any reason for judgment about the 

results it derives. The stakes are too high for the safety-

critical NPPs to accept the results of the AI without any 

reason for judgment. 

In this paper, we apply the Efficient CLAuse-wIse 

Rule Extraction (ECLAIRE) method, a rule extraction 

technique, to address the black box characteristic of AI. 

The result of the rule extraction technique comes in the 

form of “IF… THEN”. It is a rule-based system, which 

is one of the easier forms for humans to understand. To 

apply the rule extraction technique, we utilize the Deep 

Neural Network (DNN) method to develop a model that 

can recommend the optimal AOP. In addition, the data 

required to develop the DNN model were collected 

using the Compact Nuclear Simulator (CNS). The 

developed DNN model is derived in the form of a rule-

based system by applying the rule extraction technique. 

To quantitatively evaluate the derived rule-based 

systems, metrics called accuracy and fidelity are utilized. 

As a result, the DNN method with low interpretability 

can be made to have high interpretability by utilizing the 

rule extraction technique. 

 

 

2. Methods 

 

This section describes the ECLAIRE method, a rule 

extraction technique that can extract ruleset from the 

DNN model, and the combination of grid search and 

early stopping techniques used to optimize the DNN 

model.  

 

2.1 Efficient Clause-wise Rule Extraction 

 

The ECLAIRE method is one of the rule extraction 

methods and is applied to increase the interpretability of 

the DNN method [1]. In general, the DNN method is 

intended for multiple hidden layers between the input 

and output layers and is known to have low 

interpretability [2]. It is also categorized as the deep 

learning methods, which means it has high performance 

compared to machine learning methods (i.e., decision 

tree, random forest, etc.). In other words, it is a method 

with high performance but low interpretability. 

Fig. 1 shows the result of applying the ECLAIRE 

method to a DNN model that recommends AOPs. Here, 

the meanings for term, clause, rule, and conclusion are 

as follows: 

1. Term: the minimal set of a ruleset (i.e., x3 > v3) 

2. Clause: the conjunction of terms (utilizing “and”; 

i.e., x3 > v3 and x12 < v12 and … x35 > v35) 

3. Rule: the conjunction of clauses (utilizing “or”; 

i.e., Rule 3) 

4. Ruleset: the conjunction of rules 

5. Conclusion: the result when the clause is satisfied 

(i.e., AOP 3) 

 

 
 

Fig. 1. Example of extracted rule. 

 

The operation of the ECLAIRE method consists of 2 

steps. The first step extracts a ruleset from each hidden 

layer of the DNN model. This is illustrated in Fig. 2. 

Specifically, a surrogate model is trained by combining 

the weight parameters from the hidden layer with the 

predicted values from the output layer. The surrogate 

model utilizes the C5.0 algorithm [3, 4], a refinement of 
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the decision tree, which is a highly interpretable method 

to extract ruleset. In other words, the strategy is to 

increase the interpretability of the DNN model by 

utilizing the weight parameters and predicted values of 

the less interpretable DNN model to train the more 

interpretable C5.0 algorithm. This process is repeated 

for the number of hidden layers in the DNN model. This 

means that a ruleset is generated from each hidden layer. 

 

 
 

Fig. 2. Example of extracting ruleset from each hidden layer 

of the DNN [1]. 

 

However, the ruleset extracted from each hidden 

layer is not associated with any input variables (x). This 

means that a ruleset consisting of weight parameters (i.e., 

h1(x), h2(h1(x), and h3(h2(h1(x))) has been created. It is 

necessary to combine the ruleset extracted from each 

hidden layer to construct a ruleset that associates the 

input variables with the predicted values (ypred). This 

process is performed in the second step. Fig. 3 shows 

the second step schematically. 

 

 
 

Fig. 3. Example of combining rulesets extracted from each 

hidden layer [1]. 

 

Specifically, the ruleset extracted from each hidden 

layer is decomposed in the following order, utilizing the 

training data that was used to train the DNN model. 

First, the ruleset is decomposed into clauses. Second, a 

conclusion is derived by sequentially injecting weight 

parameters to determine whether a clause is satisfied or 

not. Third, a surrogate model (i.e., the C5.0 algorithm) 

is trained by combining the input variables and the 

conclusions; since the weight parameters are 

constructed based on the input variables, it is assumed 

that the conclusion is also derived based on the input 

variables. Fourth, a ruleset is constructed to associate 

the input variables with the conclusion via the trained 

surrogate model. Fifth, the new ruleset is decomposed 

into clauses. Sixth, unsatisfied clauses are removed from 

the ruleset by sequentially injecting the input variables. 

Seventh, the above process is repeated on the ruleset 

extracted from each hidden layer. Finally, the final 

ruleset is completed by integrating the satisfied clauses. 

 

2.2 Grid Search and Early Stopping 

 

The DNN model that performs the AOP suggestions 

is the base for the application of the ECLAIRE method. 

Therefore, the performance of the DNN model is also 

an important factor. For the optimization of the DNN 

model, we used a method that combines grid search and 

early stopping techniques. 

The grid search technique sets arbitrary hyper-

parameters and sequentially trains the DNN model by 

utilizing the set hyper-parameter combinations; in this 

paper, we set the learning rate, activation function, 

number of layers, and number of nodes as hyper-

parameters. In general, an evaluation metric is utilized 

to select the optimal DNN model. This process can be 

exhaustively checked for all hyper-parameters, but it has 

the disadvantage of being very time-consuming. 

To compensate for these shortcomings, an early 

stopping technique was combined. The early stopping 

technique utilizes validation data that is independent of 

the training and testing data to confirm the learning of 

the DNN model. If the degree of learning does not 

improve, the learning is terminated. This process not 

only avoids the risk of potential overfitting of the DNN 

model, but also reduces the time required for the grid 

search technique. 

 

3. Data Acquisition and Pre-processing 

 

Data were collected to develop a DNN model for 

recommending AOPs. Here, the data were collected 

using the CNS. The CNS is an NPP simulator tool that 

simulates a Westinghouse-993 MWe 3-loop pressurized 

water reactor; it has the same parameters as the Kori-1 

and Kori-2 NPPs in the Republic of Korea [5]. It can 

simulate normal, abnormal, and emergency operating 

conditions, and various faults can be injected. In this 

paper, we utilized the CNS to collect 15 scenarios, 

which are shown in Table I. 

 

Table I: List of Simulated Scenarios 

No. Scenario name 

1 Normal operating condition 

2 PRZ pressure channel failure (high) 

3 PRZ pressure channel failure (low) 

4 PRZ water level channel failure (low) 
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5 SG water level channel failure (low) 

6 SG water level channel failure (high) 

7 Continuous insertion of control rod 

8 PRZ PORV open due to failure 

9 PRZ safety valve open due to failure 

10 PRZ spray valve open due to failure 

11 RHX front section rupture 

12 CVCS to CCWS leakage 

13 
Leakage at back section of charging flow 

control valve 

14 RCS to CCWS leakage 

15 SG tube rupture 

PRZ: Pressurizer, SG: Steam generator, PORV: 

Power operated relief valve, RHX: Regenerative 

heat exchanger, CVCS: Chemical and volume 

control system, CCWS: Component cooling water 

system, RCS: Reactor coolant system. 

 

The data obtained from the CNS consists of 2,222 

variables, and it is necessary to select only the optimal 

input variables to train the DNN model. This is because 

unnecessary input variables disturb the learning of the 

AI model. In this paper, 2 DNN models are developed 

for various applications of the rule extraction technique. 

Specifically, DNN models are developed based on 8 

and 15 scenarios. Furthermore, 27 and 137 input 

variables are selected for each DNN model by analyzing 

the symptom requirements of AOPs. 

Normalization is performed based on the selected 

input variables. It is usually done to improve the 

learning speed. Among the various normalization 

techniques, the min-max normalization is used in this 

paper. This converts the values between 0 and 1 based 

on the minimum and maximum values of each variable. 

 

4. Result 

 

4.1 Optimization of the DNN models 

 

In this paper, 2 DNN models were trained and 

optimized; each DNN model was trained with 8 and 15 

scenarios, respectively. A combined method of grid 

search and early stopping technique was used for 

optimization. The main hyper-parameters for 

optimization were the learning rate, activation function, 

number of hidden layers, and number of nodes. The 

optimal hyper-parameters of the DNN model with 8 

scenarios trained are as follows: 

1. Learning rate: 0.01 

2. Activation function: Sigmoid 

3. Number of hidden layers: 3 

4. Number of nodes: 128, 64, 32 

The optimal hyper-parameters for the DNN model 

with 15 scenarios trained are as follows: 

1. Learning rate: 0.001 

2. Activation function: Sigmoid 

3. Number of hidden layers: 2 

4. Number of nodes: 64, 32 

 

To evaluate the performance of the 2 DNN models, 

accuracy was used as the evaluation measure. The 

accuracy is a measure of how closely a DNN model’s 

predicted result matches the actual correct answer, with 

a value closer to 100% indicating better performance. 

The performance evaluation of the DNN model with 

8 scenarios trained achieved 100% accuracy on both 

training and testing data. The DNN model with 15 

scenarios trained shows 99% accuracy on the training 

data and 95% accuracy on the testing data. 

 

4.2 Rule Extraction of DNN models 

 

We apply the ECLAIRE method to the optimized 

DNN models to extract rulesets. The extracted rulesets 

are evaluated for accuracy and fidelity. The accuracy of 

the rulesets is the same as the accuracy of the previous 

DNN model evaluation, and the fidelity indicates how 

well the output of the DNN model matches the output of 

the ruleset. This fidelity is an important measure of how 

representative the derived ruleset is of the DNN model. 

The ruleset of the DNN model trained with 8 scenarios 

showed 100% accuracy and fidelity. The DNN model’s 

ruleset with 15 scenarios trained showed 83% accuracy 

and 82% fidelity. 

The rules extracted from the ruleset containing the 8 

scenarios are shown in Fig. 4; it shows only the rules for 

some of the scenarios out of the total rules. The scenario 

numbers shown in Fig. 4 are listed in Table I. 

 

 
 

Fig. 4. The result of extracted rule. 

 

The scenario 4 is a situation where the PRZ water 

level channel suddenly dictates low pressure, and the 

extracted rule provides containment radiation, PRZ 

temperature, PRZ water level, PORV front valve 

position, and charging line outlet temperature. The 

containment radiation is a significant variable in a Loss-

Of-Coolant Accident (LOCA) situation, assumed to be 

derived because PRZ water level drops in LOCA 

situations as well. The remaining variables were derived 

under the influence of other scenarios. 

The scenario 14 is a LOCA situation, and the 

extracted rule suggests containment radiation. This was 

extracted because it is the only scenario that raises the 

containment radiation among all the scenarios. In other 
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words, the containment radiation variable is the best 

basis for diagnosing this scenario. 

 

5. Conclusion 

 

In this study, we apply the ECLAIRE method, a rule 

extraction technique, to improve the low interpretability 

of DNN models. As an example, we develop a DNN 

model that recommends AOPs and apply the ECLARE 

method to this model. The application of the ECLAIRE 

method contributed to improving the interpretability of 

the DNN model. For the DNN model with 8 scenarios 

trained, the DNN accuracy, ruleset accuracy, and 

fidelity were confirmed to be 100%. This means that the 

DNN model and the rules in the ruleset match perfectly. 

However, the DNN model trained on 15 scenarios 

performed slightly worse, with 95% DNN accuracy, 

83% ruleset accuracy, and 82% fidelity. In terms of the 

performance of the DNN model, 95% accuracy is also a 

high performance, but it showed low interpretability for 

the extracted rules. This means that in difficult problems 

(i.e., 15 scenarios), the interpretability of the extracted 

rules becomes lower. 
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