Numerical Study on the Concrete Microstructure using Image-based Virtual Element Method

Hyeong-Tae Kim, PhD

Kyoungsoo Partk, PhD

May 31, 2023

Computational & Experimental Mechanics Group School of Civil & Environmental Engineering Yonsei University, Seoul, Korea

Motivation

Concrete Microstructure Analysis

- Complexity of microstructure
- Wide range of length scale

Discretization of complex-geometry mesh Number of elements increase

Virtual Element Method

- K. Park, H.T. Kim, T.H. Kwon, and E. Choi, 2016, Nuclear Engineering and Design 310, 15-26
- Pignatelli, I., Kumar, A., Field, K.G., Wang, B., Yu, Y., Le Pape, Y., Bauchy, M. and Sant, G., 2016. Scientific Reports, 6, 20155
- Maruyama, I., Kontani, O., Takizawa, M., Sawada, S., Ishikawao, S., Yasukouchi, J., ... Igari, T. 2017. *Journal of Advanced Concrete Technology*, 15(9), 440–523.
- Choi, H., Chi, H., Park, K., & Paulino, G. H. 2021. International Journal of Numerical Methods in Engineering, 122(1), 25-52

May 31, 2023

^{mental} 2

Contents

Motivation

Image Based Analysis

- Microstructure Reconstruction
- Mesh Generation based on the Image

Numerical Analysis

- Virtual Element Formulation
- Uniaxial Tension Test
- Aggregate Volume Expansion

D Summary

(?)

Image Preparation

Concrete Specimen

Mix component		Content (kg/m ³)	Volume (m ³)
Portland Cement		425	137.1
Water		166	166.0
Aggregate	Quartz sand [석영] 0-2 mm	525	198.1
	Gabbro [반려암] 2-8 mm	1267	448.0
Admixture	Plasticizer	2.89	2.8
	Air entraining agent	0.77	0.7

Computed Tomography

Specimen size = $20 \times 20 \times 80$ mm X-ray CT pixel size $\approx 13.8 \ \mu m$

Neutron CT pixel size $\approx 43.0 \ \mu m$

V. Szilágyi, K. Gméling, Z. Kis, I. Harsányi, L. Szentmiklósi (2019). Neutron-based methods for the development of concrete. Proceedings of the 12th International Symposium on Brittle Matrix Composites, BMC 2019, 183-193

D.F.T. Razakamandimby, & K, Park. (2019). Characterization of air entrained concrete porosity using X-ray computed micro tomography image analysis. Proceedings of the 12th International Symposium on Brittle Matrix Composites, BMC 2019, 139-146

May 31, 2023

Image Segmentation

□ X-ray CT (Depend on the material density)

Image Segmentation : Otsu method

 $\rho_{Quartz} = 2.67 \text{ g/cm}^3$ (Howie et al. 1992)

 $\rho_{C-S-H} = 2.604 \text{ g/cm}^3$ (Allen et al. 2007)

Neutron CT (Depend on the hydrogen component)

Remove partial volume effect

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

(<u>२</u>)

Microstructure Reconstruction

H.T. Kim, D.F.T. Razakamandimby, V. Szilagyi, K. Zoltan, L. Szentmiklosi, M.A. Glinicki, and K. Park, 2021 Reconstruction of concrete microstructure using complementarity of X-ray and neutron tomography, Cement and Concrete Research 148, 106540

May 31, 2023

Ô

Microstructure Reconstruction

Aggregate Particle Size

7 🛞

Verification

□ Microstructure

Volume Fraction

(

Mesh Generation based on the Image

Microstructure

Kim, H. T., & Park, K. 2022. Computed Tomography (CT) Image-based Analysis of Concrete Microstructure using Virtual Element Method. Composite Structures, 115937.

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) **Mechanics Group**

Computational & Experimental

Virtual Element Formulation

Governing Equation

$$\int_{\Omega} \boldsymbol{\epsilon}(\boldsymbol{u}) : \boldsymbol{\sigma}(\boldsymbol{\nu}) \, d\mathbf{x} = \int_{\partial \Omega} \boldsymbol{\nu} \cdot \mathbf{t} \, d\mathbf{x} \quad \forall \boldsymbol{\nu} \in \mathcal{K}_0$$

Preliminary Space

$$\widetilde{\mathcal{V}}(F) = \left\{ v_h \in \mathcal{H}^1(F) : \Delta v_h \in \mathcal{P}_1(F) \text{ in } F, v_{h|e} \in \mathcal{P}_1(e) \ \forall e \in \partial F \right\}$$

□ First Projection by Projection Operator $\int_{E} \Pi^{0} \nabla \phi_{i} \cdot \mathbf{m}_{\alpha} \, d\mathbf{x} = \sum S_{i\beta} \int_{E} \mathbf{m}_{\beta} \cdot \mathbf{m}_{\alpha} \, d\mathbf{x} = \int_{\partial E} \phi_{i} \mathbf{m}_{i} \cdot \mathbf{n} \, d\mathbf{s} - \int_{E} \phi_{i} \operatorname{div} \mathbf{m}_{i} \, d\mathbf{x}$

□ **Projection of Displacement** $\int_{E} (\Pi^{0} v_{h}) p \, d\mathbf{x} = \int_{E} v_{h} p \, d\mathbf{x} \quad \forall p \in \mathcal{P}(E)$ $p = \sum a_{i} \cdot m_{i} \ m_{1} = 1, \ m_{2} = \left(\frac{x - x_{c}}{h_{2}}\right), \ m_{3} = \left(\frac{y - y_{c}}{h_{2}}\right)$

Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A, 2013, Basic principles of virtual element methods. *Mathematical Models and Methods in Applied Sciences*, 23(1), 199-214.

May 31, 2023

Uniaxial Tension Test

Meshes

- VEM mesh : 432, 632, 2,497, 4,812, and 9,021 elements
- *n_{elem}* in VEM meshes less than
 0.604% of the Reference mesh

□ Reference solution

- Pixel-based FEM (Abaqus)
- $n_{elem} = 1,494,856$

Material Properties

- Aggregate : $E_a = 60 \text{ GP}a$, $v_a = 0.25$
- **Paste** : $E_p = 20 \text{ GP}a$, $v_p = 0.2$

Result

Macro Elastic Modulus

D Total Strain Energy

12

Aggregate Volume Expansion

Material Properties

• Aggregate
$$E_a = -3.16 \times 10^{-19} r_n + 60.42$$
 $v_a = 0.25$
 $\varepsilon_{V,a} = 5.78 \left\{ 1 - \frac{1}{\sqrt{0.9997 + (1 - 0.9997)\exp[1.36 \times 10^{-15}(1 - 0.9997)r_n]}} \right\}$

Paste

$$E_p = -0.15 \times 10^{-19} r_n + 22.25 \qquad \nu_p = 0.2$$

$$\varepsilon_{V,p} = -3.1 \left\{ 1 - \frac{1}{\sqrt{0.9979 + (1 - 0.9979) \exp[2.588 \times 10^{-16}(1 - 0.9979)r_n]}} \right\}$$

Jing, Y., & Xi, Y. (2017). Theoretical Modeling of the Effects of Neutron Irradiation on Properties of Concrete. *Journal of Engineering Mechanics*, *143*(12), 04017137. https://doi.org/10.1061/(asce)em.1943-7889.0001360

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computation

Irradiation Effect on the Material

Elastic modulus

Volume change

Jing, Y., & Xi, Y. (2017). Theoretical modeling of the effects of neutron irradiation on properties of concrete. *Journal of Engineering Mechanics*, *143*(12), 04017137.

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computationa Mechanics Gro

Result

Volume Change

Elleuch, L. F., Dubois, F., & Rappeneau, J. (1972). Effects of neutron radiation on special concretes and their components. *ACI Special Publication*, *43*, 1071–1108.

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Summary

- 고 X-ray와 Neutron CT 를 상호보완하여 poly-mineral aggregate를 사용한 실제 콘크리트의 미세구조를 재구성한다.
- 미재구성된 Digital image를 기반으로 다각형요소를 이용하여 복잡한 콘크리트 미세구조를 효율적으로 이산화 한다.
- D 전체 요소개수에 상관없이 미세구조의 형상에 대한 정확성을 유지할 수 있으며, homogeneous mesh의 요소개수를 통해서 사용자가 요구하는 수치해석의 정확도를 확보한다.
- 이미지 기반 미세구조 해석을 통해 비파괴적 방법으로 중성자
 조사환경과 같이 극한 환경에서 콘크리트의 재료특성 평가를
 진행하고자 한다.

 $\textcircled{\textcircled{}}$

Question and Answer

Thank you

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

Irradiation effects on the Concrete

• Field, K. G., Remec, I., & Pape, Y. Le Pape., 2015. Nuclear Engineering and Design, 282, 126–143.

• K. Park, H.T. Kim, T.H. Kwon, and E. Choi, 2016, Nuclear Engineering and Design 310, 15-26

Pignatelli, I., Kumar, A., Field, K.G., Wang, B., Yu, Y., Le Pape, Y., Bauchy, M. and Sant, G., 2016. Scientific Reports, 6, 20155
Maruyama, I., Kontani, O., Takizawa, M., Sawada, S., Ishikawao, S., Yasukouchi, J., ... Igari, T. 2017. Journal of Advanced

Concrete Technology, 15(9), 440–523.

 (\mathfrak{A})

3D Concrete Microstructure

H.T. Kim, D.F.T. Razakamandimby, V. Szilagyi, K. Zoltan, L. Szentmiklosi, M.A. Glinicki, and K. Park, 2021 Reconstruction of concrete microstructure using complementarity of X-ray and neutron tomography, Cement and Concrete Research 148, 106540

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

19 (

Combined x-ray & neutron image

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

 $\textcircled{\textcircled{}}$

Morphological Filtering

21

Mesh Generation

Non-simply connected elements

L² Projection Operator

Projection of Displacement

$$\int_{E} (\Pi_{1}^{0} v_{h}) p_{1} d\mathbf{x} = \int_{E} v_{h} p_{1} d\mathbf{x} \quad \forall p_{1} \in \mathcal{P}_{1}(E)$$

$$p_{1} = \sum_{\alpha=1}^{n_{p_{1}}} \alpha_{\alpha} m_{\alpha} \qquad m_{1} = 1, \ m_{2} = \frac{x - x_{c}}{h_{P}}, \ m_{3} = \frac{y - y_{c}}{h_{P}}, \ m_{4} = \frac{z - z_{c}}{h_{P}}$$

Projection of Strain

$$\int_{E} (\Pi_{0}^{0} \nabla v_{h}) \cdot \mathbf{p}_{0} \, d\mathbf{x} = \int_{E} \nabla v_{h} \cdot \mathbf{p}_{0} \, d\mathbf{x} \quad \forall \mathbf{p}_{0} \in [\mathcal{P}_{0}(E)]^{2}$$
$$\mathbf{p}_{0} = \sum_{\alpha=1}^{n_{\mathbf{p}_{0}}} a_{\alpha} \mathbf{m}_{\alpha} \qquad \mathbf{m}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{m}_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{m}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$\int_{E} \Pi_{0}^{0} (\nabla v_{h}) \cdot \mathbf{p}_{0} \, d\mathbf{x} = \int_{\partial E} v_{h} \mathbf{p}_{0} \, d\mathbf{x} - \int_{E} v_{h} \operatorname{div}(\mathbf{p}_{0}) \, d\mathbf{x}$$

May 31, 2023

Element Stiffness Matrix

 $\mathbf{K}_{E,s} = \overline{\mathbf{K}}_{E,s} \otimes \mathbf{I}_d$

$$\overline{\mathbf{K}}_{E,s} = (\mathbf{I}_n - \mathbf{P}_1^0)^T \mathbf{\Lambda} (\mathbf{I}_n - \mathbf{P}_1^0)$$

K. Park, H. Chi, and G.H. Paulino, 2020, Numerical recipes on virtual element method for elasto-dynamic explicit time integration, International Journal for Numerical Methods in Engineering 121, 1-31

May 31, 2023

24

 $(\begin{subarray}{c} \begin{subarray}{c} \end{subarray} \end{subarray}$

Mesh Generation based on the Image

Grid on the domain

Centroidal Voronoi Tessellation(CVT)

Kim, H. T., & Park, K. 2022. Computed Tomography (CT) Image-based Analysis of Concrete Microstructure using Virtual Element Method. *Composite Structures*, 115937.

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

VEM vs FEM

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

Aggregate Volume Expansion

Horizontal stress field

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

Aggregate Volume Expansion

Strain error : H^1 -type skeletal norm error

May 31, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

 (\mathfrak{R})