Monte Carlo Fission Source Convergence Diagnosis by Skewness and Kurtosis Estimation Method for Various Benchmark Problems

2023. 05. 19

Seung-Ah Yang* and Ho Jin Park

Kyung Hee University

*seunga@khu.ac.kr

2023 KNS Spring Meeting May 17-19 2023

- Background
- Previous Study

Background

Determining Inactive Cycles in MC Eigenvalue Calculations

- In a Monte Carlo (MC) eigenvalue transport calculation, so-called "<u>inactive cycle</u>" MC runs are performed to provide stationary or fundamental-mode fission source distribution (FSD).
- Fission Source Distributions (FSDs) converge by the Dominance Ratio (DR) which is the convergence rate of an iterative numerical solution. In the nuclear system with a high dominance ratio, MC solutions are very slowly converged.
 - Difficult to determine whether the FSD iteration has converged or not in a high DR problem.
 - ➢ Insufficient convergence of FSDs can result in bias.
- Accurately determining the number of inactive cycles is crucial to obtaining an unbiased Monte Carlo solution.

Previous Study

Convergence Diagnosis Methodology

- There are various studies for the convergence criteria in MC eigenvalue calculations.
 - Ueki's posterior source convergence method ^[1]
 - ➤ Shim's on-the-fly stopping criterion ^[2]
 - Center of Mass method ^[3]
- Recently, we propose a way in which the skewness and kurtosis can be used to test for convergence criteria in MC eigenvalue calculations ^[4].
 - Skewness estimation method (SEM)
 - ➢ Kurtosis estimation method (KEM)
- In this study, we will test the SEM and KEM analyses to determine the FSD convergence cycle or the number of inactive cycles in MC eigenvalue calculations for various benchmark problems
 - ➤ AGN- 201K^[5], 1D Slab Problem^[6], and OECD/NEA Slow Convergence Benchmark^[7]

- Skewness and Kurtosis
- Skewness and Kurtosis Estimation Method

Skewness and Kurtosis

□ What is Skewness and Kurtosis?

- Skewness is the measure of the symmetry or distortion from a **normal distribution**.
- **Kurtosis** is the measure of whether the data has outliers, including heavy tails or light tails.

온테칼로 노물리 연구실 장 경희대학교 KUNG HEE UNIVERSITY

Skewness and Kurtosis Estimation Method(1/2)

□ Fission Source Convergence Diagnosis by SEM and KEM

- In MC eigenvalue transport calculations, the MC tallies based on a fully converged FSD should be symmetrically and normally distributed.
- Accordingly, skewness (G_1) and kurtosis (G_2) can be used as convergence criteria where the values of Eqs. (1) and (2) fall below a predetermined threshold value, ε_1 and ε_2 .

$$\begin{aligned} \max_{m} |G_1[S_m^p, L, N]| &< \varepsilon_1 , \qquad \cdots (1) \\ \max_{m} |G_2[S_m^p, L, N]| &< \varepsilon_2 , \qquad \cdots (2) \\ S_m^p &= \int_{V_m} d\mathbf{r} S^p(\mathbf{r}) \qquad \cdots (3) \end{aligned}$$

- ✓ $S^p(\mathbf{r})$ is the FSD of neutrons born at any energy, \mathbf{r} , and cycle index p.
- \checkmark *m* refers to the cell or region index for MC tally
- \checkmark *L* indicates the minimum cycle length for skewness and kurtosis calculations.

Skewness and Kurtosis Estimation Method(2/2)

□ Fission Source Convergence Diagnosis by SEM and KEM

• $G_1[S_m^p, L, N]$ and $G_2[S_m^p, L, N]$ indicate the skewness and kurtosis by the distribution of FSDs from the current cycle *p* to the last cycle *N*.

- In this study, all McCARD calculations are performed as below conditions:
 - 100,000 #/cycle and 10,000 cycles
 - \succ L = 4000 and $\varepsilon_1 = \varepsilon_2 = 0.5$ ^[8]

- AGN-201K and 1D Slab Problems
- OECD/NEA Slow Convergence Benchmark Problem

AGN-201K and 1D Slab Problems

Given AGN-201K Problem

- Low DR of about 0.59.
- Initial fission sources are placed at the lowest part among the fuel disks (**Fuel 9**).
- Nevertheless, as shown in Figs. 2 and 3, the FSDs converged immediately.

Figure 1. Vertical cross section of AGN-201K

경

<mark>몬</mark>테칼로 노물리 연구실

AGN-201K and 1D Slab Problems

1D Slab Problem(1/2)

- Intermediate DR of about 0.9188.
- Figures 5 and 6, as the cycle proceeds, the skewness and kurtosis are closer to 0.0.
- The skewness and kurtosis come within the convergence criteria (=0.5) on the 31st and 39th cycle.

CEL 2 CEL 3 CEL 4 CEL 5 CEL 6 CEL 7 CEL 8

Figure 4. Vertical cross section of slab

Figure 6. Cycle-wise cumulative skewness of slab

경

<mark>몬</mark>테칼로 노물리 연구실

Reflective B.C

CEL 1

CEL 9 CEL 10

Initial FSD, biased

AGN-201K and 1D Slab Problems

1D Slab Problem(2/2)

- The number of convergence cycles by the SEM and KEM was determined as **31st and 39th**.
- It was noted that the convergence cycle by the SEM ($\varepsilon_1=0.5$) and KEM ($\varepsilon_2=0.5$) was similar to the behavior of FSD in Fig. 7, which converges at about 40 cycles.

Table I: Convergence cycle results f	u .	40th cycle	
Method	Convergence Cycle	Lracti - 21.0 -	
Method	1D Slab	ensity.	
Ueki's posterior	56	0.10 - ഋ	
Type-A stopping criterion	97	Sour	
Type-B stopping criterion	100	.0.05 -	
SEM	31	- Eis	
KEM	39	0.00 -	⊂ CEL6 ▷ CEL7

Figure 7. Fission source density fraction of slab

경희대학

<mark>몬</mark>테칼로 노물리 연구실 💙

Checkerboard storage of assemblies (1/4)

- In the checkerboard problem, fuel and water are stored alternately, surrounded by concrete on three sides. Because of its asymmetry and the superior reflecting properties of concrete, the FSDs were converged biased towards the upper-left corner, resulting in a <u>high DR of 0.997</u>
- We consider the <u>**10 fuels**</u> on the left side among all fuels.

Figure 9. Fission distribution after FSD convergence

<mark>몬</mark>테칼로 노물리 연구실

Checkerboard storage of assemblies (2/4)

- Calculated average skewness and kurtosis through ten calculations using different initial seeds. •
- The SEM converged at the **1007th cycle**, while the KEM converged at the **1127th cycle**. •

Figure 11. Cycle-wise cumulative kurtosis

<mark>몬</mark>테칼로 노물리 연구실

경희대힉

□ Checkerboard storage of assemblies (3/4)

- Figure shows the cycle-wise fission source density fraction of Problem 1.
- Considering the statistical uncertainty and noise, it can be confirmed that the FSDs tend to converge at around 1000 cycles.
 - > The convergence cycles diagnosed by SEM (1007th) and KEM (1127th) were similar.

Mathad	Convergence Cycle		
Method	Prob. 1		
SEM	1007		
KEM	1127		
Observed	1000 1200		
FSD value	1000 ~ 1200		

2023 KNS Spring Meeting May 17-19 2023

□ Checkerboard storage of assemblies (4/4)

- Figures 12 and 13 show the probability distribution of FUEL1_1 respectively before and after FSD convergence at the 100th and 2000th cycle.
- After convergence, the distribution of FUEL1_1 appears to resemble a normal distribution.

Figure 12. Probability distribution before FSD converged

<mark>몬</mark>테칼로 노물리 연구실

경

□ Pin-cell array with irradiated fuel (1/4)

- Problem 2 is the light water reactor fuel pin with a non-symmetric idealized burnup distribution.
 - \blacktriangleright We used Case 1-3, low-multiplication section in the center Fuel 5 with Natural UO₂.
 - Fuel 1~4 and 6~7 are fresh fuels UO₂(4.5wt.%). Fuel 8~9 are fresh fuels UO₂(4.0wt.%).
- It has a **high DR of 0.976**.
- Due to the small FSDs in the lower parts (Fuel 6 ~ Fuel 9) shown in Figure 15, skewness and kurtosis values from Fuel 1 to Fuel 5 were used.

<mark>몬</mark>테칼로 노물리 연구실

□ Pin-cell array with irradiated fuel (2/4)

- Figures 16 and 17 presents the cycle-wise cumulative skewness and kurtosis of Problem 2.
- By the SEM and KEM, the convergence cycle is determined as 752nd and 881st.

Figure 16. Cycle-wise cumulative skewness

Figure 17. Cycle-wise cumulative kurtosis

<mark>몬</mark>테칼로 노물리 연구실

경희대힉

□ Pin-cell array with irradiated fuel (3/4)

- Figure shows a slowly changing behavior of FSD and indicates that it converges at about 900 cycles.
 - > The number of convergence cycles diagnosed by $SEM(752^{nd})$ and $KEM(881^{st})$ were similar.

Mathad	Convergence Cycle		
Method	Prob. 2		
SEM	752		
KEM	881		
Observed	000 1200		
FSD value	900~1300		

2023 KNS Spring Meeting May 17-19 2023

Pin-cell array with irradiated fuel (4/4)

• Figure 18 shows the probability distribution of FUEL4 in the 100th cycle before FSD convergence, while Figure 19 confirms its normal distribution in the 2000th cycle after convergence.

Figure 18. Probability distribution before FSD converged

Figure 19. Probability distribution after FSD converged

<mark>몬</mark>테칼로 노물리 연구실

경희대흐

OECD/NEA Benchmark Summary

- Both the SEM ($\varepsilon_1 = 0.5$) and KEM ($\varepsilon_2 = 0.5$) showed similar convergence cycles to Ueki's posterior and the Shim's type B. In Problem 2, SEM and KEM converged at 752nd and 881st cycles, which falls between Ueki's posterior and the Shim's types A and B stopping criterion.
- The SEM and KEM methods reliably diagnose the fission source convergence cycle.

Tab	le II: Convergence cycle results for OECE	D/NEA Slow Con	vergence Benchr	nark	
	Method	Converge.	nce Cycle	0.01	1160 th cycle
	Ueki's posterior	Prob. 1 1160	Prob. 2 1865	цинарования 	(Mart D ay Mart Mart Day
F	Type-A stopping criterion	163	36		Manager and the structure
	Type-B stopping criterion	1075	48		(] }
	SEM	1007	752	1E-5-	1865 th cycle
	KEM	1127	881	1E-6 0	1000 2000 3000 CYCLE

Figure 20. Ueki's posterior source convergence diagnosis

Problem 1 Problem 2

Conclusion

Summary

- Confirm the performance and reliability of the SEM and KEM for various DR problems
- AGN-201K, 1D Slab, and OECD/NEA Slow Conv. Benchmarks.
 - SEM and KEM provided effective and reliable convergence cycles when compared to other method and fission source density fraction trends.
 - > Concluded that a criterion value of **<u>0.5 for both \varepsilon_1 and \varepsilon_2 is reasonable</u>.**
- In this study, large neutron histories and long cycles (i.e., 100,000 #/cycle and 10,000 cycles) were used for skewness and kurtosis calculations to reduce the statistical fluctuations caused by FSD noise.

Given Future work

• We will study the modified SEM and KEM that combines Kalman filter to reduce the statistical fluctuation of FSDs.

Reference

- 1. T. Ueki, F. B. Brown, Stationarity modelling and informatics-based diagnostics in Monte Carlo criticality calculation, Nucl. Sci. Eng., Vol.149, p. 38, 2005.
- H. J. Shim, C. H. Kim, Stopping criteria of inactive cycle Monte Carlo calculations, Nucl. Sci. Eng., Vol.157, p. 132, 2007.
- 3. Michael T. Wenner and Alireza Haghighat, "Study of Methods of Stationarity Detection for Monte Carlo Criticality Analysis with KENO V.a," Trans. Am.Nucl. Soc., pp. 647–650, 2007.
- H. J. Park and J. Y. Cho, Skewness and Kurtosis Estimation Method for Fission Source Convergence Diagnosis in Monte Carlo Eigenvalue Calculations, Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, July 9-10, 2020
- 5. M. Olguin et al., Investigation of the AGN-201M Research Reactor's Unique Dominance Ratio, Nucl. Sci. Eng, Vol. 196, pp. 1323-1332, 2022.
- 6. H. J. Park, H. C. Lee, "Application of Higher Order Fission Matrix for Real Variance Analysis in McCARD Monte Carlo Eigenvalue Calculation," M&C2017, Apr. 16-20, 2017, Jeju, Korea.
- 7. R. N. Blomquist, M. Armishaw et al., Source Convergence in Criticality Safety Analyses Phase I: Results for Four Test Problems, Nuclear Science ISBN 92-64-02304-6, OECD 2006 NEA No. 5431.
- 8. D. N. Joanes, C. A. Gill, "Comparing Measures of Sample Skewness and Kurtosis," The Statistician, Vol.47, 1, p.183, 1998.

경희대힉

THANK YOU

Appendix

🗆 Kalman filter

Cycle-wise cumulative FSD fraction

FSD fraction with Kalman filter after 700 cycle

몬테칼로 노물리 연구실 📢

경희대학교 KYUNG HEE UNIVERSITY

