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1. Introduction 

 

Nuclear Power Plants (NPPs) are composed of many 

valves and pipes, and leakage can occur due to 

deterioration as the operating period increases. In 

particular, the probability of leakage is high in areas 

vulnerable to leakage such as welded parts, small pipes, 

and so on. Currently, in NPPs, it is possible to check 

whether or not leakage occurs through changes in 

humidity, radiation, and the sump level of the 

containment. However, for small-scale leakage, their 

change rate is not large; so, after a long period of time 

has elapsed since the leakage occurred, leakage can be 

detected. In other words, if a small-scale leakage occurs, 

it is difficult to detect it quickly. Accordingly, the Korea 

Atomic Energy Research Institute is currently 

conducting a research on the development of a detection 

system for unidentified RCS small leakage [1]. The 

system consists of a suction loop, transfer loop, and 

measurement area. Humid air in the leakage area is 

collected through the suction loop and transferred to the 

measurement area through the transfer loop; finally, 

leakage detection is performed by measuring relative 

humidity and radiation changes in the measurement area. 

It can detect not only whether or not leakage has 

occurred but also the amount of leakage.  

As a part of the study for quantifying leakage, this 

study aims to confirm the possibility of quantifying 

leakage in the case of small-scale leakage. In this study, 

small leak flow prediction was performed using 

artificial intelligence in Loss-Of-Coolant Accident 

(LOCA) situations. An existing study [2] has shown 

high prediction performance by predicting leak flow in 

case of large leakage situations. Since the purpose of 

this study is to predict the leak flow for small-scale 

leakage situations, data for leakage situations with very 

small break sizes were used. The data were obtained for 

hot-leg and cold-leg LOCA scenarios through a 

Modular Accident Analysis Program (MAAP) [3]. 

Bidirectional Long Short-Term Memory (BiLSTM) was 

used to predict the leak flow, and the hyperparameter 

optimization method was applied to build an optimal 

model. 

 

2. Methods 

 

2.1 BiLSTM 

 

BiLSTM consists of a forward LSTM network and a 

backward LSTM network [4]. Basic LSTM networks 

learn only sequence information from the past to the 

present for an input sequence. This causes the limitation 

that the results of LSTM are mainly determined based 

on past information [4]. To solve this problem, BiLSTM 

was proposed. BiLSTM learns not only forward, but 

also backward sequence information from future to past. 

In other words, better performance than basic LSTM 

networks can be expected because it learns forward and 

backward sequence information for the input data. Fig. 

1 shows the structure of BiLSTM. 
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Fig. 1. Structure of BiLSTM [4]. 

 

In Fig. 1, h  and h  are hidden states of forward and 

backward layers, respectively. And h is hidden states of 

BiLSTM. The final hidden states of BiLSTM can be 

derived by merging the hidden states of forward and 

backward LSTM networks. Merging methods include 

simply concatenating, summing, and averaging them. In 

this study, the final hidden states were derived by 

concatenating the hidden states of forward and 

backward LSTM networks.  

 

2.2 Optimization of BiLSTM model 

 

To develop a BiLSTM model for leak flow prediction, 

we optimized the hyperparameters using Keras Tuner. 

There are various hyperparameters that users need to 

decide when developing an artificial intelligence model. 

In this study, four parameters were optimized through 

Keras Tuner. Table I shows the hyperparameters and 

search spaces for each hyperparameter. Here, units of 

hidden layer decrease by two times as the number of 

layers increases. (e.g., when the number of layers is 3 

and units of the hidden layer are 128, the units per 

hidden layer are 128, 64, and 32.) 
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After randomly determining the hyperparameters 

through the combination of each search space, the 

optimal hyperparameters are selected according to the 

loss value of validation datasets. The loss function is the 

mean squared error. 

 

Table I: Search space for hyperparameter optimization 

No. Hyperparameters Search space 

1 Number of layers [2, 3] 

2 Units of hidden layer [64, 128, 256, 512] 

3 Learning rate [0.001, 0.005, 0.01] 

4 Batch size [64, 128, 256] 

 

3. Data preprocessing 

 

Data were obtained using the MAAP code that 

simulates the condition of the OPR-1000 power plants. 

The obtained data were hot-leg and cold-leg LOCA 

scenarios. In order to simulate small leakage situations, 

the break sizes of about 72.0 10  to 66.0 10  times 

the double-ended guillotine break were applied. These 

are scenarios in which a leakage of about 0.03 to 1 gpm 

occurs, and data for 30 minutes after the event. Table Ⅱ 

shows the postulated scenarios and the number of 

datasets. To develop the prediction model, nine 

variables that are affected by leakage were applied as 

input variables. In addition, the data were normalized to 

a value between 0 and 1 for effective model training.  

 

Table Ⅱ: Postulated scenarios 

Scenario 

types 

Range of 

leak flow 

(10-2 kg/sec) 

Range of 

leak flow 

(gpm) 

No. of 

train/val/test 

datasets 

Hot leg 

LOCA 
0.17~5.1 0.039~1.184 24/3/3 

Cold leg 

LOCA 
0.14~4.7 0.031~1.011 27/3/3 

 
4. Leak flow prediction results using BiLSTM 

 

The leak flow prediction models using BiLSTM were 

developed separately for hot-leg and cold-leg LOCA 

scenarios. Also, the models were developed by changing 

the input sequence to check the prediction performance 

according to the input sequence. Here, the input 

sequence is a 1-second interval: if the input sequence is 

5, it means data for 5 seconds. When developing the 

model according to the input sequence change, the 

optimal hyperparameters were determined using Keras 

Tuner. 

The performance of the developed models was 

evaluated through Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and Mean Absolute 

Percentage Error (MAPE). Each evaluation metric is 

calculated as follows: 
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where, 
realy  and 

predy  are real and predicted values, 

respectively. tN  is the total number of datasets. 

 

Table Ⅲ shows the performance of the developed 

leak flow prediction model on test datasets. In both hot-

leg and cold-leg LOCA scenarios, prediction errors in 

all evaluation metrics decrease as the input sequence 

increases. This means that past long-time information 

has a positive effect on prediction performance when 

predicting leak flow. However, long input sequences are 

limited because the purpose of this study is to check the 

leak flow in a short time. Therefore, input sequence of 

10 was selected as best because the MAPE is within 

10% in both scenarios. Table Ⅳ shows the 

hyperparameters of the model developed at input 

sequence 10. 

 

Table Ⅲ: Leak flow prediction results 

Scenario 

types 

Input 

sequence 

Test datasets 

RMSE MAE 
MAPE 

(%) 

Hot-leg 

LOCA 

2 0.0048 0.0029 11.00 

5 0.0039 0.0024 9.04 

10 0.0032 0.0020 7.48 

20 0.0024 0.0015 5.86 

Cold-leg 

LOCA 

2 0.0044 0.0027 12.06 

5 0.0037 0.0025 11.48 

10 0.0026 0.0017 8.00 

20 0.0023 0.0015 7.18 

 

Table Ⅳ: Hyperparameters of the developed model in case 

of input sequence 10 

No. Hyperparameters 

Scenario types 

Hot-leg 

LOCA 

Cold-leg 

LOCA 

1 Number of layers 3 3 

2 Units of hidden layer 128 128 

3 Learning rate 0.005 0.001 
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4 Batch size 64 256 

 

Fig. 2 shows the MAPE values according to break 

sizes in hot-leg and cold-leg LOCA scenarios; as the 

case number increases, the break size (i.e., leak flow) 

increases. In Fig. 2, the black dotted horizontal line 

represents the MAPE of 10%, showing an error of less 

than 10% from about the 10th break size in all scenarios. 

It is a scenario with a leakage of about 0.4 gpm, 

meaning that leak flow can be predicted somewhat 

exactly in larger leakage situations. However, it is 

difficult to predict the leak flow below 0.4 gpm. It is 

thought to be because the plant states do not change 

significantly at very small-scale leakage. 

 

 
 

Fig. 2. MAPE values according to break sizes (in case of input 

sequence 10). 

 

Figs. 3 and 4 show the prediction results using the 

prediction model when the input sequence is 10. The 

prediction error is rather large at the beginning of the 

leakage, but the prediction model predicts accurately 

overall over time. 

 

  
 

Fig. 3. Prediction results in the hot-leg LOCA scenario (for 

leak flow of 0.75 gpm). 

 

 
 

Fig. 4. Prediction results in the cold-leg LOCA scenario (for 

leak flow of 0.58 gpm). 

 

5. Conclusions 

 

In this study, leak flow prediction was performed to 

quantify the small-scale leakage. BiLSTM, an artificial 

intelligence method, was used to predict the leak flow. 

Data applied for model development were the hot-leg 

and cold-leg LOCA scenarios, where leakage of 0.03 to 

1 gpm occurs. The leak flow prediction model was 

developed by changing the input sequence of BiLSTM. 

The optimal input sequence was determined to be 10 

based on the prediction performance and the purpose of 

this study (i.e., leakage detection and quantification in a 

short time). The results of the developed model showed 

that the prediction error decreased as the break sizes 

increased, and the MAPE was within 10% above a 

certain break size. The leak flow at the break size is 

approximately 0.4 gpm, and it was accurately predicted 

in scenarios with leakage between 0.4 and 1 gpm. 

However, the prediction error in the leakage scenarios 

below 0.4 gpm is very high and it was difficult to 

confirm the leak flow in a short time in the case of a 

very small-scale leakage. 
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