Assessment of Fission Product Migration in Molten Salt and Metal Reactor (MSMR)

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea, May 18-19, 2023

May 18, 2023

Eunhyug Lee¹, Tae-suk Oh¹, Jaehyun Ryu¹ and Yonghee Kim¹

¹Korea Advanced Institute of Science and Technology (KAIST)

Contents

Introduction

- Motivation & Objectives

Concept and Modelling of MSMR

- Definition and concept of MSMR
- Fuel and molten salt properties
- Detailed modelling of MSMR

Numerical Results

- Reference results
- Fission product information and migration scenarios
- Reactivities, burnups, and conversion ratios
- Pu concentrations and effective delayed neutron fractions

Summary & Conclusions

Introduction (1/2)

Needs for mobile power source

- Deployment of large nuclear reactors becomes inadequate for:
 - Military base
 - Mining industry
 - Small village in remote area
 - In space (Moon & Mars) and spacecraft...
- Often, fossil fuel (mostly diesel) based generators are utilized
 - Adverse effect(s) stemming from CO₂ emission
- As one of the remedies, miniaturized reactor concept is pursued

Ultra-micro reactor

- A miniaturized reactor small enough to be loaded in a container and could be easily transported by a vehicle
 - Container size: 234.8 cm width, 239.0 cm or 269.5 cm height
- Realization via Molten Salt Reactor (MSR) concept?

Introduction (2/2)

Molten salt reactor (MSR)

- Reactor which consists of molten salt (dissolved fuel), where the salt acts as both fuel and coolant
 - circulates between the active core and heat exchanger
- Superior inherent safety attributes:
 - No meltdown, no hydrogen explosion
 - Strong negative feedback originating from thermal expansion of fuel salt

Limitation of Thermal spectrum MSR

- Proliferation concern by online fuel reprocessing
- Production of radioactive waste from the usage of graphite moderator & Generation of tritium

Limitation of HALEU-loaded MSFR for ultramicro reactor

- HALEU: High Assay Low Enriched Uranium (<19.75 w/o)
- Calculated cylindrical MSFR size for criticality (NaCl-UCl₃ fuel / eutectic composition)
 - Reactor diameter should be at least 215 cm & Fuel inventory about 20-30 tons.
 - Too large to be loaded in a container ----
 - To overcome, MSMR concept is proposed.

Schematic diagram for MSR

ORNL MSRE

Concept and Modelling of MSMR (1/4)

Liquid metal as fuel

- Generates the heat
- Compact fuel
 - High conversion ratio
 - Small core size
 - Low fuel mass

Molten salt as coolant

- Natural circulation or pump operation
- Trap of non-gaseous fission products
 - Noble metal in the liquid fuel
 - Non-noble metal (Cs, I, Sr etc) in the salt

Secondary system

- Removing heat from primary system
 - Flowing through the heat exchanger
 - Cooling outer surface of reactor vessel

Concept and Modelling of MSMR (2/4)

Liquid metallic fuel (U-Fe alloy)

- Eutectic composition:
 - 66-34 (number), 89-11 (mass)
 - Melting temperature: 723°C
- Density for U and Fe

 $\rho(T) = A - BT$

Metal	Α	В	
Fe	8.618	8.83e-4	
U	19.520	1.601e-3	

- Density for mixture: Ideal Liquid Model

$$\frac{1}{\rho} = \sum_{i} \left(\frac{w_i}{\rho_i} \right)$$

- Moore, E. E., Turchi, P. E., Landa, A., Söderlind, P., Oudot, B., Belof, J. L., ... & Perron, A. (2019). Development of a CALPHAD thermody namic database for Pu-U-Fe-Ga alloys. Applied Sciences, 9(23), 5040.

- Grosse, A. V., & Kirshenbaum, A. D. (1963). The densities of liquid iron and nickel and an estimate of their critical temperature. *Journal of Inorganic and Nuclear Chemistry*, 25(4), 331-334.

- Rohr, W. G., & Wittenberg, L. J. (1970). Density of liquid uranium

. The Journal of Physical Chemistry, 74(5), 1151-1152.

Concept and Modelling of MSMR (3/4)

Molten salt coolant (NaCl-KCl-MgCl₂)

- Eutectic composition: 30.2-22.7-47.1 (mol)
 - Melting temperature: 385°C
- Density
 - Linear approximation of each component
 - Ideal Liquid Model

Formula	$t_{\rm m}/^{\circ}{\rm C}$	$\rho_m/g\ cm^{-3}$	$k/g \text{ cm}^{-3} \circ C^{-1}$
NaCl	800.7	1.556	0.000543
KC1	771	1.527	0.000583
MgCl ₂	714	1.68	0.000271

 $\rho(t) = \rho_m - k(t-t_m)$

Haynes, W. M., Lide, D. R., & Bruno, T. J. (2016). CRC handbook of chemistry and physics. CRC press.

Villada, C., Ding, W., Bonk, A., & Bauer, T. (2021). Engineerin g molten MgCl2–KCl–NaCl salt for high-temperature thermal e nergy storage: Review on salt properties and corrosion control s trategies. Solar Energy Materials and Solar Cells, 232, 111344.

Concept and Modelling of MSMR (4/4)

Reactor Layout

- Fuel zone
 - Diameter = 65 cm, Height = 62.3 cm
 - Uranium enrichment = 12 wt.%
 - Fuel inventory: 2,818 kg
- Upper molten salt zone: Same as Fuel zone
 - Chloride enrichment = 99 at.% Cl-37
- Gas plenum: 5 cm
- Reactor vessel: 1 cm
- Secondary system: 2 cm thickness gap molten salt-filled
- Reflector: 40 cm SS304

Drum-shaped reactivity control device

- Located in the reflector region and surrounding the active core
- Drum body: SS304 (same as a reflector)
 - The number of drums: 8
 - Height: 62.3 cm
 - Diameter: 38 cm
- Pad: B₄C (98% of theoretical density, 90wt.% of B-10)
 - Pad thickness: 4 cm
 - Arc angle: 120°

Numerical Results (1/6)

Reactivities and conversion ratios .vs. Full-power operation time (2.5 MWth)

- Program: Serpent 2.2.0
- Samples: (History: 100,000, inactive cycle: 100, active cycle: 300)

140 years of lifetime and 45 MWd/kg of discharge burnup can be estimated. The worth of the reactivity control drum has been estimated to 2,629 \pm 20 pcm

Fuel Temperature Coefficient

Temperature range [C]	800 - 900	900 - 1000	1000 - 1100	1100 - 1200
Temperature coefficient [pcm/K]	-2.48 ± 0.06	-2.48 ± 0.06	-2.51 ± 0.06	-2.67 ± 0.06

Numerical Results (2/6)

Fission Product Information

- Three types of fission products
 - Noble gas, noble metal, others
- Fission products at 45 MWd/kg burnup
 - Total mass: 131.2 kg

Noble gas	gaseous fission products that do not dissolve in liquid fuel and molten salt
Noble metal	non-gaseous fission products that do not dissolve in molten salt
Salt seeker (Others)	fission products can be dissolved in molten salt

Element	Туре	Mass fraction [%]	Element	Туре	Mass fractio n [%]	Element	Туре	Mass fraction [%]
Xe	Noble gas	12.58606	Hf	Noble metal	4.52E-17	Pm	Others	0.038028
Kr	Noble gas	1.163383	Hg	Noble metal	1.41E-24	Sm	Others	2.675983
Rn	Noble gas	8.42E-14	Tl	Noble metal	4.64E-14	Gd	Others	0.123585
Zr	Noble metal	12.44069	Pb	Noble metal	7.71E-07	Dy	Others	0.002517
Nb	Noble metal	0.002414	Bi	Noble metal	8.63E-11	Но	Others	8.84E-05
Мо	Noble metal	9.971559	Te	Noble metal	1.446093	Er	Others	0.000111
Tc	Noble metal	2.471687	Se	Noble metal	0.192263	Tm	Others	7.55E-06
Ru	Noble metal	5.93603	Po	Noble metal	1.80E-12	Yb	Others	4.25E-06
Rh	Noble metal	1.767941	Ι	Noble metal	0.693799	Y	Others	1.481246
Pd	Noble metal	2.280483	At	Noble metal	3.78E-21	Rb	Others	1.226256
Ag	Noble metal	0.124034	La	Others	3.629297	Cs	Others	8.660187
Cd	Noble metal	0.214767	Ce	Others	6.794389	Sr	Others	1.629292
In	Noble metal	0.034521	Pr	Others	3.39548	Ba	Others	6.435432
Sn	Noble metal	0.325362	Nd	Others	12.10858	Br	Others	0.066805
Sb	Noble metal	0.081617						

Eunhyug Lee, KNS Spring Meeting, 2023

Numerical Results (3/6)

Fission Product Information

- Three types of fission products
 - Noble gas: gaseous fission products that do not dissolve in liquid fuel and molten salt
 - Noble metal: non-gaseous fission products that do not dissolve in molten salt
 - Salt seeker (Others): fission products that can be dissolved in molten salt
- Assumptions and scenarios of fission product behavior
 - All noble gases are completely removed from the fuel
 - All noble metals remain in the fuel
 - Some of the salt-seekers in the fuel migrate to the molten salt

	Noble gas	Noble metal	Salt-seeker elements
Reference	Not removed	Remains in fuel	Not removed
Case A	Completely removed	Remains in fuel	Not removed
Case B	Completely removed	Remains in fuel	50% removed [*]
Case C	Completely removed	Remains in fuel	100% removed

* Removal ratios of all elements are identical

Numerical Results (4/6)

Reactivities .vs. Full-power operation time (dependent on three scenarios)

- Program: Serpent 2.2.0, library: ENDF/B-VII.1
- History: 100,000, inactive cycle: 100, active cycle: 300

Reactivity and reactor lifetime can reach up to 870 pcm and 350 years repectively.

Numerical Results (5/6)

Burnup and Conversion ratios .vs. Full-power operation time

- Program: Serpent 2.2.0, library: ENDF/B-VII.1
- History: 100,000, inactive cycle: 100, active cycle: 300

Conversion ratios rise with increasing burnup due to accumulation of Pu Migration of fission products hardly affects the conversion ratio

Numerical Results (6/6)

Pu concentration and delayed neutron fraction .vs. Full-power operation time

- Program: Serpent 2.2.0, library: ENDF/B-VII.1
- History: 100,000, inactive cycle: 100, active cycle: 300

Plutonium is accumulated and β_{eff} decreases with increment of burnup Plutonium accumulation rate dwindles due to utilization of plutonium Migration of fission products hardly effects β_{eff}

Summary & Conclusions

The effect of fission product removal on the neutronics behavior of MSMR has been investigated

- Expected reactor lifetime can be expanded up to 2.5 times
- Maximum reactivity can rise up to 3 times
- The evolution trends for discharge burnup, conversion ratio, and delayed neutron fraction are similar to each other

	Reference	Case A	Case B	Case C
Expected reactor lifetime	140 years	150 years	240 years	350 years
Maximum reactivity	240 pcm	260 pcm	510 pcm	820 pcm
Discharge burnup	45 MWd/kg	49 MWd/kg	78 MWd/kg	113 MWd/kg
Conversion ratio	0.67-0.73	0.67-0.73	0.67-0.76	0.67-0.78
Delayed neutron fraction	630-743 pcm	624-743 pcm	573-743 pcm	524-743 pcm

- Case A) Noble gas removed, Noble metal remains, Salt-seeker elements not removed
- Case B) Noble gas removed, Noble metal remains, Salt-seeker elements 50% removed
- Case C) Noble gas removed, Noble metal remains, Salt-seeker elements 100% removed

Summary & Conclusions

The MSMR can be utilized as an ultramicro-miniaturized reaactor

- The diameter of MSMR is estimated at about 65 cm
- Fuel mass of the reactor is about 2.8 tons
- Its life is estimated to be about 140 years with 2.5 MWth
- Normal operation is guaranteed in aspect of temperature coefficient and reactivity worth

Behavior of fission products can alter several properties of MSMR

- Lifetime and maximum reactivity can rise up to about 2.5 times and 3 times
- Removal of fission products can be advantage in terms of lifetime but challenges in terms of excess reactivity
- For more precise of assessment and optimization, chemical properties of fission products should be more investigated

Thank you for your attentions Any Questions?

