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1. Introduction 

 
The field of nuclear safety has seen an increase in the 

application of PSA (Probabilistic Safety Assessment) 

methods, which are used to quantify the risk level of 

nuclear power plants. However, conventional PSA 

methods have a critical limitation in addressing time-

dependent interactions, such as component failure 

timings or mitigation strategy implementation timings. 

This is due to the reliance on predefined sequences of 

safety system and operator actions, which are evaluated 

through limited thermal hydraulic code calculations 

using conservative conditions [1]. 

To overcome these limitations, Dynamic PSA has 

been developed, which incorporates various samples of 

operator action timings and component reliability into 

extensive thermal hydraulic simulations. However, this 

approach comes with high computational costs and 

limits the number of scenarios that can be simulated [2]. 

To improve the computational efficiency of Dynamic 

PSA, this paper proposes the use of deep learning. The 

proposed approach aims to approximate the thermal 

hydraulic code through deep learning. By utilizing this 

technique, the paper aims to provide a solution to the 

limitations posed by conventional PSA, while also 

improving computational efficiency. 

 

2. Methodology and Result 

 

2.1 Dataset Generation and Scope of Research 

 

The dataset was produced by selecting a specific 

scenario and varying the timing of mitigation strategies 

for that scenario. TLOCCW (Total Loss of Component 

Cooling Water) with loss of auxiliary feedwater at 

Optimized Power Reactor 1000-type nuclear power 

plant (NPP) was chosen as the base case, and 2,000 

cases in a 72-hour period were created by varying the 

timing of the implementation of each mitigation 

strategy using MAAP (Modular Accident Analysis 

Program) 5.03. Fig. 1 shows level 1 PSA event tree of 

TLOCCW in the reference NPP and the scenario used 

in this study. All the reactor coolant pump seals and 

other engineered safety features that are dependent on 

the component cooling water system as shown in Fig. 1., 

and Table I shows the means of mitigation strategies 

implemented. 

 

 
Fig. 1. Level 1 PSA Event Tree of TLOCCW and Scenario 

Used in this Research (Red Line) [] 

 

Table I: 3 Mitigation Strategies Used in Dataset 

Mitigation Strategies Mitigation Measures 

Steam Generator Injection 

Atmosphere Dump 

Valves Open 

External Injection 

Reactor Coolant System 

Depressurization 

Depressurization via a 

Power-Operated Relief 

Valve 

Reactor Coolant System 

Injection 
External Injection 

 

Due to the limited scope of this study, which focuses 

on in-reactor phenomena during the applicability study 

phase, only three of the seven mitigation strategies 

outlined in the Severe Accident Management 

Guidelines (SAMG) were implemented as in-reactor 

mitigation strategies [3]. 

As an exploratory study of applicability, we aimed to 

investigate whether deep learning could generate a 

novel strategy sequence that deviates from the existing 

SAMG method, even though it does not fit within the 

confines of the SAMG Diagnosis flow chart. 

 

2.2 A Deep Learning Model as a Surrogate for MAAP 

 

Although MAAP has a relatively short analysis time 

compared to other severe accident analysis codes, it is 

still computationally expensive to simulate enormous 

scenarios. It is well established that deep learning 

models are universal function approximators [4]. Also, 

in a pre-trained deep learning model, inferences can be 

made in a fraction of the time (In this study, most 

inferences were made in less than seconds). 

The surrogate model used in this study is composed 

of 7 layers of fully connected layers with batch 
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normalization. 7 thermal-hydraulic parameters and 3 

mitigation strategy switches of time t were injected into 

the neural network, and 7 thermal-hydraulic parameters 

at time t+1 were derived. 7 thermal-hydraulic 

parameters are shown in Table II. 

 

Table II: 7 Thermal-hydraulic Parameters as Inputs and 

Outputs of Neural Network 

Hot Leg Temperature 

Cold Leg Temperature 

Steam Generator 1 Pressure 

RCS Pressure 

Reactor Water Level 

Core Exit Temperature 

Steam Generator Downcomer Level 

 

3. Results and Discussions 

 

3.1 Performance of Surrogate Model 

 

Rolling prediction refers to a technique in which a 

model makes predictions for a sequence of data points 

one at a time, with each prediction being based on the 

most recent data point as well as a specified number of 

previous data points. The performance of the surrogate 

model was measured with rolling prediction and mean 

average error. Fig. 2. Shows mean average error at each 

time step. 

 
Fig. 2. Mean Average Error at each Time Step. 

 

The error is largest at 18 hours, when the highest 

number of RPV fails occurred. It is believed that the 

model does not accurately predict the rapid pressure and 

temperature changes that occur as the RPV fails. 

 

4. Conclusions 

 

This paper proposes a deep learning approach to 

improve the efficiency of Dynamic PSA in the field of 

nuclear safety. The proposed method was applied to a 

specific scenario, TLOCCW, and the results 

demonstrated the potential of deep learning to improve 

the efficiency of Dynamic PSA although this study is a 

preliminary study prior to full-scale deep learning 

application and has many limitations. For further work, 

we will study how the surrogate model can predict rapid 

changes in temperature and pressure behavior. 
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