

원자력시설해체 및 방사성폐기물관리 2023년 Spring Conference

방사성물질 심해 유출률 평가를 위한 해석모델 구축에 관한 연구

Development of Model for Radionuclides Release Rate Calculation from a Transport Cask Submerged in the Deep Sea

2023-05-19

정구현, 이재호, 이상훈*

*shlee1222@kmu.ac.kr

목차

23.03.31 한국수력원자력 제공

사용후핵연료 저장량

4.000 5.000

210 000

2.000 3.000

41672

140 000

1.000

36816

70 000

기존계획대비 원전별 저장시설 포화전망이 1~2년 단축됨.

- 1호기

= 2호기 = 3호기

- 4호기

= 5호기

■6호기

■신 1호기

■신 2호기

(다발)

1호기

= 2호7 = 3호7

487

350.000 (다발)

건식저장시설

6 000

280.000

- 전력수급계획이 바뀜에 따라 사용후핵연료 설명회가 개최되었으며, 저장시설 포화전망을 재산정한 결과를 발표함.^[2]
- 사용후핵연료가 꾸준히 발생함에 따라 원전별 저장량이 증가함.^[1]

사용후핵연료 저장 현황

월성원자력본부 468

하울원자력본

하빗워자려보브

새울원자력본부

건식저장시설

고리워자력본부 485

월성원자력본부 32728

■ 연구배경

사용후핵연료 운반 현황

- 현재 원전별로 임시저장시설을 개발하려는 추세를 보이지만 중·장기적으로 사용후핵연료의 집중 관리를 위한 관리시설의 개발은 불가피 하며 이러한 시설로의 운반이 필요함.
- 모든 원전이 연안에 위치한 국내 특성상 관리시설도 연안에 위치할 가능성이 높아 사용후핵연료의 해상운반은 불가피함.^[3]
- 사용후핵연료의 해상운반시 사고에 의해 핵종이 유출되면 환경 및 지역 거주민에게 영향을 끼칠 수 있기에 위험도 평가는 필수적임.^[4]
- 원자력 선진국에서는 해상운반을 수행하고 있으며, 그에 따른 위험도 평가는 코드를 이용하여 경로 별로 수행됨.

Risk Assessment Code for

Maritime transportation

- MARINRAD
- POSEIDON
- Barrier Effect Model

• 연구배경

Barrier Effect Model

- MARINRAD의 유출률 평가 모델
 - 운반용기의 격납경계 손상 여부에 따라 핵종의 유출을 결정함.
 → 내부 핵종의 유출률 = 사용후핵연료 핵종 침출률
- 일본 CRIEPI 사에서 개발한 모델^[5]
 - MARINRAD + 운반용기 내부 핵종이 침출된 후 유로를 통해 용기 밖으로 유출되는 양
 - 1. 핵종 침출률 〈 용기 내부 핵종농도 x 내부 해수의 유출률
 - → 내부 핵종의 유출률 = 핵종 침출률
 - 2. 핵종 침출률 〉 용기 내부 핵종농도 x 내부 해수의 유출률
 - → 내부 핵종의 유출률 = 용기 내부 핵종 포화농도 x

격납경계 손상

Case 1: 큰 유로폭 → 격납 성능 소실 Case 2: 작은 유로폭 → 격납 성능 잔존

5/18

Barrier Effect Model

- 운반용기 설계조건 상 가혹한 사고조건에 의해 격납경계가 손상, 유로가 생성되어도 그 크기가 매우 작을 것으로 예상됨
 - ➢ Barrier Effect Model과 같이 유출지연효과를 고려하는 것이 합리적일 것으로 판단됨.
- CRIEPI의 모델은 R_{a}^{2} 평가에 주요한 인자인 유속 (u_{m}) 을 온도차이에 인한 부력 및 수평 자세에 국한하여 계산함

〈CRIEPI 주요 식^[6]〉

• 연구목표

방사성폐기물 심해 유출 시나리오

해석방법

➢ Sub-Modeling 기법

- 심해 환경 전체는 해석이 제한되기에 심해 환경의 일부를 외부 유동장으로 설정함.
- 외부 유동장의 크기와 유로의 크기가 극심하여 CFD 해석 제한됨.

■ 방법론

전체 해석 모델 (Full Field Model)

전체 해석 모델 프로파일 추출

- > 기준 사용후핵연료 모델 선정
 - 2019, 사용후핵연료 PLUS7의 저장 비율이 20.74 %로 가장 높음.^[6]
 - PLUS7을 기주으로 유동 모델 개발^[8]

Assembly	Design	KORI 1	KORI .	Assembly	Design	KORI 1	KORI 2	KORI 3&4 HANBIT 1&2 HANUL 1&2	HANBIT 3–6 HANUL 3–6	SHIN-KORI 1&2 SHIN- HANUL 1&2	SHIN-KORI 3	Proportion (%)	Upper Reactor Internal
,				14×14	SFA	1.98						1.98	Guide Tube
14×14	SFA	1.98			OFA	4.29						4.29	Guide Post
	OFA	4.29			KOFA	1.20						1.20	_
	KOFA	1.20		16×16	SEA		5.41					5.41	
16×16	SFA		5.41	10.10	KOEA		0.04					0.04	Variable Pitch
	KOFA		0.84		KOFA		0.84					0.84	Claddian Spring
17-17	ACE7		1.61		ACE7		1.61					1.61	al
1/×1/	SFA			17×17	SFA			1.71				1.71	ion Avial Blank
	OFA				FRA			1.99				1.99	
	KOFA				OFA			5.06				5.06	
	Vantage 5H				KOFA			8.11				8.11	Pellet
	RFA				Vantage 5H			12.34				12.34	tites a
	ACE7				DEA			9.56				9.56	nentation Tube
16×16	PLUS7				NIA ACEZ			6.50				6.00	Tube
	KSFA				ACE/			0.48				0.48	Axial Blanke
	CESFA			16×16	PLUS7				15.31	4.89	0.54	20.74	
	HIPER16				KSFA				9.43			9.43	r Grid
	GUARDIAN	0.00	7.00		CESFA				0.65			0.65	Fuel Rod
	1 0121	1.47	/.80		HIPER16				0.04			0.04	
			〈 원		GUARDIAN	0.00			9.56			9.56	_
				Т	otal	7.47	7.86	44.25	34.99	4.89	0.54	100.00	_

방법론

 \geq

٠

٠

전체 해석 모델 (Full Field Model)

〈사용후핵연료 집합체 Porfold Redia model〉

10 / 18

■ 방법론

전체 해석 모델 (Full Field Model)

- > DOE의 Porous media 기법으로 사용후핵연료 단순화
 - 방향에 따른 유효열전도도 필요함.^{[8][9]}
 - 두 면이 정사각형인 직육면체이며, 내부에 열원이 있을 때 유효열전도도를 계산하는 식을 사용함.^[9] (등방성 재료임을 가정)

■ 방법론

전체 해석 모델 (Full Field Model)

▶ 유동 해석 모델

- 범용 열유동 해석 코드인 FLUENT 2021 R1 사용함.
- 21개의 경수로 핵연료 다발이 적재 가능한 운반용기를 참조하여 3 차원 ½ 의 온건한 모델 생성함.
- 운반용기 주변에서 더 균일하며, 전체 평균 0.81의 Orthogonal Quality를 가지는 Mesh 생성함.

전체 해석 모델 (Full Field Model)

▶ 해석 가정 조건 및 경계 조건

- 기준연료 PLUS7의 연소도 45 GWd/MTU, 냉각기간 10년 가정함.^[10]
- 심해 환경을 고려해 0.5m/s 외부유속 및 15℃의 외부온도를 가정하여 경계조건을 설정함.
- 격납경계가 손상되어 운반용기 유로가 있음을 가정하여 내·외부 정압 차이는 없음.
- 운반용기 외부의 유동이 중요하므로 Standard $k-\varepsilon$ 모델 사용함.
- 운반용기 내부 해수로 가득 찬 정상상태를 가정함.

국소 해석 모델 프로파일 입력

국소 해석 모델 (Local Field Model)

▶ 유동 해석 모델

- 유출지연효과를 고려하기 위해선 핵종의 침출률이 유출률 보다 큰 필요조건을 만족해야 함.
 → 다양한 인자에 의해 복합적으로 적용되기에 본 연구에서는 유로의 폭을 1mm로 가정함.
- 해석의 용이성을 위해 내부 해수 및 사용후핵연료 집합체만 모사함.
- 평균 0.79의 대부·핵종·유출률·lity/통 착좌 법률 참

복<mark>합적으로 작용</mark> 핵종 재고량, 핵종

방법론

국소 해석 모델 (Local Field Model)

해석 가정 및 경계 조건 \geq

- 해수로 가득 찬 정상상태를 가정함.
- 전체 해석 모델과 동일하게 PLUS7 한 다발의 붕괴열은 800W로 가정함. •
- 속도와 열유속 프로파일을 전체 해석 모델에서 가져옴. ٠
- 외부 열 조건을 고려하기 위해 벽면에서의 열조건을 입력할 수 있는 Shell Conduction 사용함 • → 벽면에서 가상의 고체 재료 물성과 두께를 입력할 수 있음.
- 경계층 유동을 레이놀즈 수로 계산한 결과 층류 영역이므로 Laminar 모델 사용함.

층류영역

15 / 18

전체 해석 모델 (Full Field Model)

▶ 해석 결과 및 분석

- 내·외부 온도차이는 약 9도임.
- 운반용기 외부 강제대류에 따른 유동 및 운반용기 내부의 자연대류에 의한 유동을 확인함.
- 서브 모델링 기법 사용을 위해 프로파일을 추출할 영역에서의 유동을 확인함.

국소 해석 모델 (Local Field Model)

▶ 해석 결과 및 분석

- 내·외부 온도차이는 약 8도로 전체 해석 모델 대비 감소함.
- 1mm의 매우 작은 유로를 통한 유동을 확인함.
- 유로 내 일부 영역만 입구로 활용되고, 그 외의 영역은 출구로 활용되는 것을 확인함.
- 유로를 통해 운반용기 내부로 들어온 유체는 모두 내부에서 섞여 포화농도를 가지는 것을 가정함.
- 운반용기의 유로를 통해 나가는 해수의 유출률은 66.325 g/s임.

Barrier effect를 고려할 때 유로를 통한 유출률을 보다 정확한 CFD를 이용하여 계산하는 모델을 개발하였으며, 추후 개발된 모델을 토대로 국내 상황에 맞는 해양운반 위험성 평가 코드 개발이 가능할 것으로 판단됨.

[결론]

- DOE에서 제안한 Porous media 방법으로 국내 사용후핵연료의 많은 비율을 차지하고 있는 PLUS7 연료를 단순화함.
- 운반용기의 격납성능이 완전히 소실되지 않아 Barrier effect를 고려해야 할 <u>매우 작은 크기의 유로를 가질 때</u> mesh의 크기 차이, 개수와 같은 <u>기술적인 문제를 Sub-Modeling 기법으로 유출률을 계산하는 모델을 개발함.</u>
- <u>기존 CRIEPI</u>의 가정 조건인 자연대류 상황, 수평 자세를 벗어나 보다 정확하고 범용성 있게 유출률을 계산할 수 있을 것으 <u>로 판단됨.</u>
- <u>추후 Barrier Effect가 유효한 범위를 합리적으로 설정하여 각 범위에 맞는 방식으로 유로를 통한 유출률 계산이 가능할</u> <u>것으로 판단됨.</u>
- CFD로 구현 가능한 범위일 경우 본 연구에서 사용된 방식으로 모델을 개발하여 유출률 계산이 가능할 것으로 판단됨.
- 최종적으로 <u>국내 상황에 맞는 해양 운반 위험성 평가 코드 개발에 이바지할 수 있을 것으로 기대됨.</u>

Reference

[1] 2022.08.24 국가지표체계-산업통상자원부, 사용후핵연료 공론화위원회, 한국원자력산업회의, 원자력안전위원회

[2] 2023.02.10 산업통상자원부, 한국원자력환경공단

[3] 2023.03.31 한국수력원자력

[4] NAC INTERNATIONAL

[5] IAEA Safety Standards. (2018). Regulations for Safe Transport of Radioactive Material, 2018 Edition, Specific Safety Requirements No. SSR-6 (Rev.1)

[6] Caracteristics for the Representative Commercial Spent Fuel Assembly for Preclosure Normal Operations. (2007). Bechtel

 [7] von Kármán, Th. (1930). Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Fachgruppe 1 (Mathematik) 58–76

[8] 한국원자력연구원,건식저장용기 내부 핵연료집합체 해석을 위한 Porous model 방법론 검토

[9] DOE,. (1996). SPENT NUCLEAR FUEL EFFECTIVE THERMAL CONDUCTIVITY REPORT. United States.

https://doi.org/10.2172/778872

[10] Dong-Keun Cho, Jung-woo Kim, In-Young Kim, Jong-Youl Lee. (2019). Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository. Journal of Nuclear Science and Technology 17:3, pages 339–346