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1. Introduction 

 
One of the challenges in fusion plasma simulation is 

to process high dimension of the data. As the 
dimensionality of the data increases the calculation 
requires extensive computing power, which leads to 
making real-time simulation using Virtual Reality [1] 
more difficult. Exploiting low dimensionality in complex 
systems has already been demonstrated to be an effective 
means in either computationally or theoretically reducing 
a given system to a more tractable form [2].  

Among various methods for the dimensionality 
reduction techniques, we apply Proper Orthogonal 
Decomposition (POD) and Dynamic Mode 
Decomposition (DMD) to simulation data generated 
from a gyrokinetic plasma turbulence simulation code, 
GENE [3][4] to identify the dominant modes of the 
system from high-dimensional data. In order to check the 
accuracy of the model, the reconstructed matrix from the 
resulting model was compared to the original data to see 
if it contains a similar structure over time. The resulting 
model has a lower dimensionality than the original data 
and thus can be used for prediction, control, and analysis 
with high efficiency in terms of computational speed and 
resources. 

 
2. Methods and Results 

 
This section covers the data generation with GENE 

and methods used to reduce the dimensionality of the 
data; DMD and POD. In this work, the PyDMD library 
was used, including multi-resolution DMD (mrDMD). 

 
2.1 Data generation 
 

We have used a GENE sample input that conducts a 
nonlinear electrostatic collisionless local simulation with 
adiabatic electrons against Cyclone case [5] – Detailed 
physics parameters such as density, temperature, and 
their gradients can be referred to Ref. 5.  In this 
simulation, we used a grid (nx0, nky0, nz0, nv0, nw0) = 
(96, 16, 16, 32, 8), where nx0, nky0, nz0, nv0, and nw0 
are the number of radial grids, Fourier modes in the 
magnetic field-line index direction, magnetic field- 
following grids, parallel velocity grids, and magnetic 
moment grids, respectively. Time step (Δ𝑡 = 3.05 ×
10!" transit time) was automatically decided by the code 
based on the embedded gyrokinetic eigenvalue solver. 
Data of our interest, electrostatic potential, was recorded 
at each grid point related to configuration space every 
100 time steps for 1186 snapshots, and the finally 

obtained data has the size of (96, 16, 16) complex values 
for each time snapshot, which results in (96, 32, 16) 3D 
potential of a snapshot for 1186 snapshots in 
configuration space after inverse Fourier transform over 
radial (x) and field-line index (y) directions. From the 
transformed data, we use z=0 plane data only for testing 
purpose in this work. 
 
2.2 Proper Orthogonal Decomposition (POD) 
 

POD is a technique used for extracting the highest 
energy modes characterizing the fluid flow in fluid 
mechanics. The POD provides orthogonal basis for 
complex geometries based on empirical measurements 
[6]. POD shares the same algorithm with PCA (Principal 
Component Analysis), which computes the eigenvectors 
and eigenvalues of the covariance matrix of the data and 
selects a subset of the eigenvectors to represent the data 
in a lower-dimensional space. From data matrix 𝑋 ∈
ℂ#×%  where 𝑚  is the number of grid points in each 
snapshot and 𝑛  is the number of snapshots, after 
subtracting mean of 𝑋  from data matrix, compute the 
SVD (Singular Value Decomposition) and reconstruct 
the matrix with reduced rank numbers of eigenvectors 
sorted by size. A low-dimensional data matrix can be 
reconstructed by combining the mean of the data matrix 
and the previously reconstructed matrix. 

The limitation of POD is that, in constructing the 
covariance matrix, it assumes that the mean and variance 
are sufficient statistics for capturing the underlying 
dynamics [7]. Therefore, POD may not capture some 
important dynamic features in complex system. 
 
2.3 Dynamic Mode Decomposition (DMD) 

 
The DMD method provides a decomposition of 

experimental data into a set of dynamic modes that are 
derived from snapshots of the data in time [2]. From data 
matrix 𝑋 ∈ ℂ#×% where 𝑛 is the number of time step, let 
𝑋′ be the matrix one time step after 𝑋. DMD algorithm 
seeks the leading spectral decomposition of the best fit 
linear operator A in 𝑋′ ≈ 𝐴𝑋 [8]. This linear operator 𝐴 
can be found as 𝐴	 = 	 argmin

&
‖𝑋′	 − 	𝑋‖' 	= 	𝑋′𝑋( , 

using Frobenius norm and 𝑋( ∈ ℝ#×(%!*) is a pseudo-
inverse matrix. 

DMD is data-driven method, which can extract 
dominant modes without requiring knowledge of the 
governing equation of the system. While POD finds a set 
of orthonormal basis of data matrix through SVD and 
reconstructs the matrix, DMD finds an eigenvalues and 
eigenvectors of best-fit linear operator 𝐴 expressing the 
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evolution over time of a system. Since the motion of the 
plasma will vary through time, we expected that DMD 
would be more suitable for extracting the dominant 
modes for GENE data and reducing the dimensionality 
than POD. 
 
2.3.1 Multi-resolution DMD 

Multi-resolution DMD, one of the extensions of DMD, 
has much strength in complex system then DMD. The 
mrDMD recursively removes low-frequency content 
from a given collection of snapshots [9]. Thus, mrDMD 
is adaptable in the data with the dynamics of the system 
evolve at different rates. Since the underlying dynamics 
in GENE's data may not vary at a similar rate, mrDMD 
was also applied in this work. 
 
2.4 Model construction 
 

In this work, POD and DMD are used to reduce the 
dimensionality of original data. POD was applied by 
following the algorithm, and DMD model was 
constructed using a Python package PyDMD. 

PyDMD is a Python package that uses Dynamic Mode 
Decomposition for a data-driven model simplification 
based on spatiotemporal coherent structures [10]. DMD 
model can be constructed by setting a DMD instance 
such as svd_rank, tlsq_rank, exact, opt where svd_rank 
is the rank for the truncation and tlsq_rank is the rank 
truncation computing Total Least Square. PyDMD has 
various functions and several modules such as mrDMD 
and SpDMD, and in this work, multi-resolution  
(mrDMD) module that compensated for the 
disadvantages of DMD was used. 
 
2.5 Results 
 

Because data generated from GENE is in Fourier 
space, the data was subject to inverse Fourier transform 
in the x-axis and y-axis directions respectively, and then 
applied to DMD, mrDMD and POD, each. 

Fig. 1 is the integral of the data value to check the 
approximate accuracy between original data and 
reconstructed data from each model at same number of 
rank (svd_rank=100). As illustrated in Fig. 1, multi-
resolution DMD (mrDMD) showed the best performance 
while DMD only follows the initial trend and POD 
remains constant. 
 

 
Fig. 1. Integral over time step of original data and 
reconstructed data from DMD, mrDMD and POD for 
rank=100. 

 
To see the structure change of the electrostatic 

potential over time, we draw Fig. 2~4 using coutourf 
function in matplotlib python library. 

Fig. 2 is the comparison between original data and 
reconstructed data in approximately beginning, middle, 
and end of total time. As shown below, mrDMD captures 
the most similar structures to the original data. 
 

 
Fig. 2. Comparison of reconstructed data from DMD, mrDMD, 
POD with same rank(rank=100) and original data in 
approximate beginning, middle, and end portion of simulation 
time. 

As DMD follows the trend of original data at the early 
part of simulation time In Fig. 1, DMD in the first column 
of Fig. 2, which is the early part of the simulation time, 
also shows a similar structure with the original data but 
still mrDMD captures the small structures. 

In addition, we observe that as the number of ranks 
decreases, the resolution of the structures from the 
reconstructed data is also reduced. Fig. 3 compares the 
performance of mrDMD and POD with minimum ranks 
that capture fine-scale fluctuation structure from the 
original data. In the case of mrDMD, 20 rank out of 1866 
was used with condition tlsq=100 and max_level=9, and 
a rank number of 1220 for POD was used among 3072 
modes. In the case of mrDMD, if the rank number is 
further reduced from 10, the number of points out of the 
trend of the original data increases. In the case of POD, 
as the rank number decreases from 1220, the resolution 
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decreases significantly, and after 1207, it shows a 
constant trend like in Fig. 1.  

 
Fig. 3. Comparison of reconstructed data and original data in 
minimum ranks that showed good accuracy in mrDMD and 
POD (20 modes out of 1866 in mrDMD, 1220 modes out of 
3072 in POD). 

 
Fig. 4 is results of mrDMD and POD at rank 20 and 

1220, respectively, and both follow a similar trend to the 
original data. 
 

 
Fig. 4. Integral over time step of original data and reconstructed 
data from mrDMD of rank=20 and POD of rank=1220, 
respectively. 

3. Conclusions 
 

Through the comparison of three methods, DMD, 
POD and mrDMD, mrDMD showed the best 
performance in reducing the dimensionality of the 
plasma turbulence simulation data even with a smaller 
number of ranks while maintaining the structures of 
original data. We observed mrDMD can capture the 
dynamic features at spatiotemporally separate scales as 
designed and showed practical potential to reconstruct 
the structures of original data similarly. On the contrary, 
we found that DMD only follows the trend at the early 
portion of total time and converged to a constant value. 
Also, POD couldn’t capture the dynamics of the data in 
our case. 

Before closing this paper, we’d like to discuss 
potential future works. In analyzing high dimensional 
plasma data generated from large scale kinetic 

simulations, the techniques developed in this work will 
provide a useful tool to reduce and economize data 
processing. Based upon this, we plan to explore the 
dynamics governing the reduced plasma data. 
Traditionally, the reductions of plasma kinetic model 
have relied upon conventional fluid closures and some 
crude analogies connecting distant physical systems 
exhibiting similar behaviors. More systematic and 
quantitative analyses of plasma dynamics, which were 
enabled by the efficient data handling techniques and 
modern machine learning algorithms, will provide a new 
way to develop more accurate and robust reduced plasma 
models along with deeper insights into complex plasma 
physics. 
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