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1. Introduction 
 

When undesired transient or unexpected situation 
happens, nuclear power plant (NPP) operators should 
take appropriate action to maintain the integrity of 
reactor core and containment building. However, 
transient situation may increase operators’ workload due 
to many parameters to be monitored, and multiple alarms. 
This can lead to human errors under the abnormal 
condition, which can further make the situation worse [1-
4].  

To reduce operator’s workload and errors, current 
NPPs commonly implement automated controllers such 
as proportional-integral-derivative (PID), programmable 
logic (PI) and field-programmable gate arrays [5-9]. On 
the other hand, as artificial intelligence (AI) has been 
emerged, deep reinforcement learning (DRL) has 
attracted interest for controller design.  

DRL-based approaches for controller have several 
strengths. First, DRL agents can learn from experience, 
whereas traditional controller relies on a model of the 
system to make decisions [13]. Secondly, DRL does not 
require manual tuning of parameters and human 
intervention [14]. Thirdly, DRL agents can explore 
different action, which can lead to better long-term 
performance [15]. On the other hand, traditional 
controllers typically rely on predefined rules such as if-
then logic. 

With this regard, there have been previous attempts to 
apply the DRL algorithm for NPP operations [16-19]. 
The previous attempts have trained their DRL algorithm 
under simulator environments so that intelligent agents 
interact with an environment. However, since there is a 
gap between a simulator and actual plant, it is difficult to 
guarantee whether the trained DRL model will work 
properly in the real NPP. 

Addressing this challenge, the authors have suggested 
the concept of Robust AI that can adapt to a new 
environment where the AI model has not encountered 
[20, 21]. The Robust AI utilizes meta-data that can 
describe upper-level data on the parameter trend. By 
using trend image as an input, the AI network recognizes 
patterns on NPP states. The feasibility of this concept has 
been demonstrated when the working environment 
becomes changed from the training environment [20, 21]. 

This study extends the concept of Robust AI into 
designing a DRL-based control algorithm in abnormal 
conditions. The DRL algorithm uses trend image as an 
input and extracts meta-data on abnormal situations. The 
aim of this algorithm is to automatically take mitigation 

action under the abnormal condition, specifically, in the 
chemical control volume system (CVCS). To do this, the 
algorithm employs soft-actor-critic (SAC) agent method 
that can find the policy to explore more widely while 
giving up on clearly unpromising avenues. 
 

2. Concept of Robust AI 
 

The concept of a robust AI starts with the meta-data 
that describes other data at the upper-level. The basic 
idea of the Robust AI behind is that although the value 
of data and scale are different, the trend of values is 
similar between the different environments. Fig.1 shows 
how the Pressurizer pressure changes in two different 
simulators after the heat exchanger pipe break event. 
Exact values at the data level are different, but the trends 
are very similar between the different simulators. The 
pressure increases after the initiation of event, and then 
starts to decrease after the manipulation, i.e., open 
pressurizer spray. Considering that meta-data is data that 
can describe other data, the Robust AI uses parameter 
trends as an input format [20, 21]. 

 
Fig. 1. Concept of robust AI. 

 
The Robust AI uses trend image that can imply 

increase and decrease of plant parameters. Fig. 2 (left) 
shows an example of the graph for the PZR level 
variation in 120 seconds. The graph is then segmented 
into four sections, based on the state-state value as 
illustrated in Fig. 2 (right).  

 

 
Fig. 2. Conversion process of a graph to trend image. 
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This study applies the concept of the Robust AI in 

developing DRL-based anomaly recovery algorithm in 
the abnormal situation. First, the algorithm will extract 
meta-data from trend images through the feature 
extractor consisting of convolutional layers. The 
extracted meta-data will provide information on 
symptoms of plant parameters. Secondly, DRL agents 
will be trained to take actions to recover and mitigate 
NPP status by controlling components identified by a 
work domain analysis. 

 
3. Work Domain Analysis 

 
To develop an anomaly recovery algorithm, this study 

targets the abnormal operation in CVCS. For a better 
understanding on key aspects of CVCS systems, a work 
domain analysis was performed using abstraction 
decomposition space (ADS). 

ADS is a framework that is systematically used to 
analyze complex systems in the Cognitive Systems 
Engineering [22]. The result of the ADS analysis on the 
CVCS system is illustrated in Fig. 3. Through this 
analysis, a functional purpose of CVCS system is defined 
as maintaining the inventory of reactor coolant system. 
To meet the purpose, the physical functions available to 
perform recovery action were defined and then further 
the lowest level of abstraction such as valves, pumps, 
indicator, flow path, etc., is identified.  

 

 
Fig. 3. ADS analysis on CVCS systems. 

 
 

4. Development of Anomaly Recovery Algorithm for 
Abnormal Operation 

 
This study developed an autonomous agent for the 

abnormal operation of the CVCS. This agent employs 
Soft Actor-Critic (SAC), one of DRL methods, as 
illustrated in Fig. 4. The SAC agent has the ability to 
learn effectively optimal policies in continuous action 
spaces. SAC agent involves Q-network and policy 
network. The SAC agent designed in this algorithm will 
take trend images on the derived physical parameters 
such as PZR level, VCT level, charging flow, RCP seal 
injection flow, letdown flow and excess letdown flow. 

Concurrently, the values of these six parameters will be 
also input to Q-network and policy network. 

The Q-network in the SAC agent will first extract the 
meta-data from trend images in the format of vectorized 
matrix. Based on the extracted matrix, the Q-network 
then estimate the expected sum of rewards that the agent 
can receive starting from a given state and following a 
given policy. The Q-network is trained by updating the 
Q-value for a given state-action pair based on the 
immediate reward and the Q-value of the next state. The 
Q-network then provides the critic estimate of the value 
of state-action pairs to the policy network. 

The policy network estimates a mapping from states to 
actions that the agent should take to maximize the 
expected sum of rewards. The policy network takes the 
state from trend images and outputs a probability 
distribution over actions. The policy is sampled from the 
probability distribution and the agent takes the action 
corresponding to the sampled policy. 

While training, the agent alternates between updating 
the Q-network and the policy network. The Q-network is 
updated to minimize the mean squared error between the 
estimated Q-value and the target Q-value. The policy 
network is updated to maximize the expected reward. 

 

 
Fig. 4. ADS analysis on CVCS systems. 

 
In DRLs, the reward is an essential element as it 

provides the reinforcement signal that guides the 
learning process. The agent in DRL takes actions and 
receives feedback in the form of a reward or penalty. The 
goal of the agent is to learn a policy that can maximize 
the accumulative reward. Therefore, the reward 
algorithm must be carefully designed to give the agent 
guidelines that lead to the desired outcomes.  

Based on the ADS analysis (see Section 3), the reward 
algorithm was designed to achieve the goals of each level: 
1) maintaining RCS inventory at the functional purpose, 
2) satisfying success criteria of PZR level, and VCT level 
at the abstraction function, and 3) supplying charging 
line and letdown line at the general function. Table II 
explains how the reward is calculated for each level. 
Each reward for each goal has a range between 0 and 1.  
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Table I. Reward algorithm for each goal of 

abstraction level. 

 
 

5. Training and Experiment 
 
For a real-time testbed to train and validate the 

proposed anomaly recovery algorithm, the Compact 
Nuclear Simulator (CNS) was used. The CNS was 
developed by the Korea Atomic Energy Research 
Institute (KAERI), referring to a Westinghouse 900 
MWe, three-loop PWR. Fig. 5. shows the display of 
CVCS system in CNS simulator. 

 

 
Fig. 5. Interface of CVCS system in CNS. 

 
Training of the SAC agent was performed for more 

than 1,200 episodes. The obtained reward as the episode 
is illustrated in Fig. 6. In one episode, the theoretical 
maximum reward is 1,000. The feasible reward that the 
agent can practically achieve was observed as 900.  

 
Fig. 6. Obtained reward by the SAC agent per 

episode. 

After training, a test was conducted to confirm if the 
proposed algorithm can automatically take appropriate 
mitigation actions in case of the leakage in CVCS. Fig. 7 
(upper) presents the control action suggested by the agent 
at the level of physical function. The performance 
followed by the control action is illustrated in Fig. 7 
(below). When the suggested control is not considered, 
the PZR level and VCT level cannot meet the proper 
boundary as appeared on the dotted line. On the other 
hand, the PZR level and VCT level can be maintained 
with the action by the agent as seen in solid lines. It 
demonstrates that the proposed algorithm can effectively 
manage the PZR level and VCT level. 

 

 
Fig. 7. The control action by the agent at the level of 

physical function (upper) and the followed performance 
(below). 

 
5. Conclusion 

 
This study applied the concept of the Robust AI to 

design anomaly recovery algorithm for the abnormal 
operation in the CVCS. To do this, the algorithm 
employs a SAC agent which is an effective approach for 
controlling key components in continuous action space.  

The performance of the proposed algorithm was tested 
when leakage in CVCS is occurred. The algorithm 
trained in the CNS environment could make appropriate 
recovery action using meta-data in the CNS environment. 
To confirm how well this algorithm can generalize and 
adapt to a new environment, the proposed algorithm still 
needs to be tested in a new environment. As a future step, 
this study plans to investigate different environments that 
the proposed algorithm can interact with in real-time.  

 
 
 
 
 

Abstraction  
Level 

Goal Reward (R) Calculation 

Functional  
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𝑘𝑘𝑘𝑘
𝑠𝑠
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