
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 18-19, 2023 

 

 
Transient Capabilities of Deep Learning Assisted Code RAST-AI 

 
Siarhei Dzianisau, Deokjung Lee* 

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 

44919  

*Corresponding author: deokjung@unist.ac.kr 

 

1. Introduction 

 

Artificial Intelligence (AI) assisted tools have 

become a new norm in our life. It is known that modern 

internet search engines such as Google or Bing benefit 

from using AI-improved algorithms. Other areas of 

knowledge readily inherit such novel methods that offer 

either saving of time or improvement of accuracy, if not 

both. Nuclear engineering became yet another new area 

where AI-driven methods found proper applications. 

Ebiwonjumi et al. [1] demonstrated an example of 

applying Deep Learning (DL), a subset of AI, to 

improving the accuracy of decay heat calculations in 

reactor simulations. Shriver et al. [2] applied a 

Convolutional Neural Network (CNN) to generating pin 

powers within a 2-dimensional (2D) reflective Fuel 

Assembly (FA). Dzianisau et al. [3] developed a CNN 

model later used in a hybrid DL/nodal diffusion code 

RAST-AI. That model was able to generate 2-group 

macroscopic cross-sections, pin powers, and assembly 

discontinuity factors for a FA with variable fuel pin 

arrangement and a wide range of operational 

parameters. Further development of RAST-AI included 

adding Gadolinia (Gd) fuel support into the CNN model 

[4].  

In this study, the capabilities of RAST-AI are 

extended to modeling not only steady-state problems 

but also time-dependent problems. The CNN model was 

trained to generate cross-sections and other parameters 

of interest for FAs with and without control rods. It also 

produced kinetic parameters such as decay constants of 

delayed neutron precursors and their respective yields 

from fission events. The scope of this paper is to 

present the testing results of the RAST-AI performance 

against its very apparent reference, which is our in-

house 2-step code system STREAM/RAST-K [5]. 

The remaining content of this paper consists of 3 

sections arranged in the following order. Section 2 

contains the description of the reactor model used in our 

study. In Section 3, the results of three simulation 

scenarios are presented and compared against the 

reference code system. Lastly, in Section 4, the primary 

outcomes and conclusions of the study are restated and 

summarized. 

 

2. Description of the test model 

 

A large commercially operated Pressurized Water 

Reactor (PWR) was chosen to test the transient 

modeling capabilities of RAST-AI. The test 

configuration was based on a rectangular PWR reactor 

geometry [6], as shown in Fig. 1. The control rod 

pattern is given in Fig. 2. 

 

 
Fig. 1. Loading pattern configuration of the test PWR. 

 

 
Fig. 2. Control rod configuration of the test PWR. 

 

Each Loading Pattern (LP) used several fresh 

uranium dioxide (UO2) FAs (blue) and fresh Gd FAs 

(red). The core modeling was performed using a 

quarter-core model with reflective west and north 
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boundaries and vacuum east and south boundaries. The 

core was surrounded by a steel-water reflector (grey).  

Control rods are shown as pink and yellow boxes, 

and their initial positions are specified for each testing 

scenario in Section 3. The RAST-AI model was trained 

with 4-finger B4C control rods, which is the type of rods 

used in the test model. 

The tested PWR uses a 16x16 FA design adopted in 

this study since RAST-AI simultaneously supports both 

16x16 and 17x17 FA types. One hundred test FA 

configurations for each of the fuel types were randomly 

prepared in such a way that fuel pins within the FAs 

were using 1%, 2%, 3%, 4%, and 5% 235U enrichment, 

while the Gd pins were using 4%, 7%, 10%, 13% of Gd 

content mixed with natural UO2. The Gd pins were 

specifically designed to have different values of Gd 

content from the training samples discussed in [4]. It 

was verified that the test samples do not have the same 

FA layouts or target Thermal Hydraulic (TH) 

parameters as in the training or validation datasets. 

 

3. Results of simulation and comparison 

 

To test the transient performance of RAST-AI, three 

synthetic benchmarks were developed. The first 

scenario is an accidental rapid ejection of the “yellow” 

control rod at Hot Zero Power (HZP). The initial 

conditions of that scenario included all rods being 

inserted into the core, and the critical state of the core 

was maintained via the Critical Boron Concentration 

(CBC) search at 0.0001% of reactor nominal power. 

The results of modeling the first scenario are shown in 

Section 3.1. 

The second tested scenario was the same as the first 

one, but operated at Hot Full Power (HFP), the initial 

critical state of the reactor was maintained at 100% of 

reactor power. The corresponding result of the second 

scenario could be found in Section 3.2. 

Lastly, the third tested benchmark scenario aimed to 

test a longer-lasting transient and started with all control 

rods out of the core (pink and yellow). Then, it was 

assumed that all rods fall into the core until reaching the 

bottom. The drop time was chosen to be 2 seconds. The 

detailed simulation results for the third scenario are 

listed in Section 3.3. 

All scenarios were compared against the reference 

STREAM/RAST-K code system [5] using identical TH 

settings and other core-wise settings, as well as 

identical LP and control rod patterns. Hence, the testing 

results display the performance of RAST-AI as an 

alternative to the traditional 2-step code system. 

 

3.1. Hot zero power control rod ejection 

 

The first scenario aimed to test the accident scenario 

that could happen before the reactor startup. The 

behavior of the main core parameters, such as excess 

reactivity, core power, and maximum centerline 

temperature, is shown in Fig. 3. The red line shows the 

reference result, and the blue line shows the RAST-AI 

result. The lines were averaged across all 100 tested 

LPs; hence, they display the average expected 

performance from RAST-AI compared to the reference 

code system. 

 

 

 

 

 
Fig. 3. Average reactivity (top), power (middle), and 

maximum centerline fuel temperature (bottom) curve 

for Transient scenario #1 (HZP Ejection). 
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Fig. 4. Average reactivity (top), power (middle), and 

maximum centerline fuel temperature (bottom) curve for 

Transient scenario #2 (HFP Ejection). 
 

 
  

 

 

 

Fig. 5. Average reactivity (top), power (middle), and 

maximum centerline fuel temperature (bottom) curve for 

Transient scenario #3 (HFP Trip). 
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3.2. Hot full power control rod ejection 

 

The second transient scenario was the most artificial 

among those presented in this paper. The simulation 

conditions were the following. All control rods were 

inserted into the reactor core, which was then set to the 

critical state and Hot Full Power (HFP) using CBC 

search. At HFP, the yellow rod was rapidly withdrawn 

from the core, similar to the previous HZP accident 

scenario. The corresponding transient curves for the 

main parameters of interest are shown in Fig. 4. Similar 

to Section 3.1, the main parameters of interest were 

excess reactivity, core power (in % from the nominal 

power), and maximum centerline fuel temperature. The 

RAST-AI result is shown as the blue line, while the 

reference result stays as the red line. 

 

3.3. Hot full power insertion of all control rods  

 

Lastly, a longer-lasting scenario was modeled and 

had the following initial conditions. Initially, all control 

rods were fully ejected, and the core was at HFP and in 

critical condition via the CBC search. Then, all rods 

were inserted into the core during the 2-second period. 

By that, the reactor trip condition was modeled to some 

extent. The parameters of interest, in this case, stayed 

the same as before: excess reactivity, core power in % 

of the nominal power, and maximum centerline fuel 

temperature. Given the scenario's duration, a more 

significant impact on the moderator temperature was 

expected, thus offering a more thorough testing of 

cross-section feedback. 

 

3.4. Summary of the RAST-AI transient performance 

 

The absolute differences between RAST-AI and 

STREAM/RAST-K presented in Fig. 3-5 are 

summarized in the form of Table I.  

 

Table I: Metrics of absolute differences calculated for 

the tested scenarios.  
Metric Reactivity, 

pcm 

Power, 

%Pmax 

Centerline Fuel 

Temperature, K 

Scenario #1 – HZP Ejection of the “yellow” rod 

Mean 1.45 4.01 13.21 

Maximum 3.10 13.26 40.43 

Median 1.47 4.01 8.72 

Scenario #2 – HFP Ejection of the “yellow” rod 

Mean 8.08 17.84 15.17 

Maximum 9.73 47.75 47.89 

Median 8.46 16.57 10.83 

Scenario #3 – HFP Trip (rapid insertion of all rods) 

Mean 20.15 0.12 7.63 

Maximum 43.91 0.55 12.43 

Median 17.64 0.03 9.24 

 

The reasons for choosing each of the given 

parameters are the following. First, excess reactivity is a 

valuable metric to observe the core state and is very 

indicative of the simulating software performance. 

Second, the core power is a typical parameter of interest 

and defines various secondary parameters that are not 

presented in this paper for brevity. Lastly, the maximum 

centerline fuel temperature was chosen because it could 

show reaching a fuel melting condition.  

The reactivity curve showed decent performance for 

all tested scenarios. The core power performed worse in 

absolute values but was reasonably accurate in relative 

terms, given the range of power change in the 

corresponding scenarios. Lastly, the fuel centerline 

temperature was found to be moderately higher in the 

RAST-AI calculation compared to the reference, 

indicating additional conservatism in calculations. 

Overall, the results demonstrate that RAST-AI could be 

a suitable tool for transient calculations in educational 

or training projects. It could be used as a preliminary 

tool for various FA-level optimizations that would take 

too long if conducted via the conventional 2-step code 

systems due to the high time burden of generating 

homogenized cross-sections. 

  

4. Conclusions 

 

RAST-AI is a novel hybrid tool for reactor analysis 

that utilizes a fast cross-section homogenization DL 

model and a fast core-wise nodal diffusion solver. The 

capability to model the reactor behavior in real-time is a 

crucial option for most reactor simulation codes. In this 

study, the transient capabilities of RAST-AI were tested 

using three transient scenarios, 16x16 fresh UO2 and Gd 

fuel and B4C 4-finger control rods. For each scenario, 

100 LPs were designed utilizing 100 unique sets of FA 

layouts for both Gd and non-Gd fuel. 

In all tested scenarios, RAST-AI could confidently 

follow reference solutions produced by 

STREAM/RAST-K codes. The differences between the 

codes were found negligible in excess reactivity and 

more noticeable in some cases of core power and 

maximum centerline fuel temperature. Overall, RAST-

AI showed its potential in solving both steady-state and 

time-dependent problems, thus becoming a more well-

rounded tool for educational or fuel optimization 

purposes. 
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