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1. Introduction 

 
Nuclear Power Plants (NPPs) can experience 

abnormal state due to a variety of causes. If an abnormal 
state is not caught promptly, it may result in economic 
loss or in severe cases of dangerous accidents such as 
core damage and radiation leakage. When an abnormal 
state occurs, the operators must quickly diagnose the 
condition and take appropriate actions. During this 
process, there are various monitoring variables that the 
operator must identify. Various monitoring variables 
that need to be identified in the process of quickly 
diagnosing and taking actions can lead to human error 
by operators. 

Recently, there have been a lot of researches on 
anomaly detection and diagnosis using Artificial 
Intelligence (AI) to help operators make decisions. 
However, existing AI models cannot solve the 
explainability-accuracy trade-off at once. This means 
that the accuracy is in conflict with explainability. The 
problem is that even if an AI makes an accurate 
diagnosis, it cannot be trusted if it cannot explain why it 
made that diagnosis. Therefore, in this study, we used 
an Explainable Boosting Machine (EBM) to address 
accuracy and explainability at once. Post-processing a 
high-accuracy black box model with Shapley Additive 
exPlanations (SHAP) can make the model explainable. 
However, this is not a direct way to explain the model. 

In this paper, we verified the performance and 
explainability of the model for diagnosing abnormal 
states using EBM. We also compared the performance 
of the black-box models of Light Gradient Boosting 
Machine (LightGBM) and Deep Neural Network 
(DNN). In addition, we applied SHAP to each black 
box model and compared the EBM with them. We 
conducted this study to see if we can provide faster 
information for real-time diagnostics. 

 
2. Method and Data 

 
This section describes the methodology and data used 

in this study. 
 

2.1 Explainable Boosting Machine 
 
EBM is one of the most recent eXplainable AI (XAI) 

models to solve the problematic explainability-accuracy 
trade-off of AI models. XAI is classified into two type: 
ante-hoc and post-hoc. Ante-hoc is to extract 
explainable features or rules together during the model 

training process. Post-hoc takes a trained black-box 
model as input and queries it to obtain the underlying 
relationships the model has learned. Post-hoc XAI 
algorithms include SHAP and Local Interpretable 
Model-agnostic Explanation (LIME). These methods 
require a black-box model to be created before they can 
be applied. On the other hand, EBM may learn training 
data while extracting descriptive features. Therefore, 
EBM is a method that belongs to ante-hoc. EBM with 
these features has high explainability and performs as 
well as black box models. 

EBM is an extension of Generalized Additive Model 
(GAM), a tree based recursive gradient boosting 
generalized additive model. The traditional GAM model 
can be represented as shown in Eq. (1): 

 

0( [ ]) ( )r rg E y f xb= +å                   (1) 

where g is the link function, [ ]E y  is the dependent 
variable, rx  is the explanatory variable, and rf is the 
feature function. The link function is used to model the 
relationship between the dependent variable and the 
explanatory variables. The feature function is used to 
describe the relationship between the dependent 
variable and the explanatory variables. These two 
functions are used to model the non-linear relationship 
between the dependent and explanatory variables. This 
GAM is good at representing the non-linear relationship 
between feature and label values [1]. However, GAM 
has the disadvantage of not being able to represent 
pairwise interactions between features. EBM has made 
improvements to these GAM. The  rf  feature function 
is trained using bagging and recursive gradient boosting 
on a traditional GAM. During the boosting step, we 
additionally employ round-robin cycles to ensure that 
only one feature is learned at a time. Round-robin 
means learning in order, with no prioritization between 
features. In this way, we cycle through each feature to 
mitigate the effects of co-linearity. It also trains the best 
for each feature to tell you how much each feature 
contributed to the model classification. And EBM 
automatically detects and includes pairwise interactions 
in the form of the Generalized Additive Model plus 
interactions) GA2M algorithm, an improved model of 
GAM. This provides greater accuracy while maintaining 
a clear and distinct nature. The GA2M algorithm can be 
represented by Eq. (2). 
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GA2M is a model in which a pairwise interaction 

term is added to express the interaction between features 
in GAM [2]. GA2M contains all pairwise interaction 
terms. EBM includes only the top N pairwise interaction 
terms that are added to the model. In this way, EBM is a 
fast implementation of the GA2M algorithm [3]. 

 
2.2 Data information  
 

In this study, data was collected using a Compact 
Nuclear Simulator (CNS). CNS is a simulator based on 
a three-loop pressurized water reactor manufactured by 
Westinghouse. 

Seven abnormal scenarios and one normal scenario 
were collected through CNS. Table I provides 
information about the collected scenarios. 

Table I: Scenario information 

Number Scenario 
0 Normal 
1 PRZ water level channel failure ‘high’ 
2 PRZ water level channel failure ‘low’ 
3 PRZ pressure channel failure ‘high’ 
4 PRZ pressure channel failure ‘low’ 
5 PRZ spray valve failure ‘opening’ 
6 PRZ PORV ‘opening’ 
7 Loss of coolant accident 

PRZ: pressurizer 
PORV: power operated relief valve 

 
The collected data is CNS data consisting of about 

2200 variables. However, variables that are unnecessary 
for classification may rather complicate the model and 
hinder a good performance. Therefore, only important 
variables were extracted from about 2200 variables. The 
variables selection method was to extract the relevant 
variables for each scenario and the variables related to 
the abnormal operation procedure. For example, for the 
PRZ PORV ‘opening’ scenario, we used PORV valve, 
PRZ pressure, temperature, water level, back-up heater, 
etc. In this way, a total of 23 variables were selected. 
Table Ⅱ shows the information on the extracted 
variables. 

Table Ⅱ: Selected variables 

Number Scenario 
ZPRTL PRT water level 

ZINST66 PRZ spray flow 
ZINST65 PRZ pressure (wide range) 
ZINST63 PRZ level 
ZINST62 PRZ temp 
ZINST48 PRT pressure 
ZINST39 Charging flow 
ZINST38 Letdown flow 

ZINST26 Containment pressure 
ZINST25 Containment temp 
ZINST23 Containment relative humidity 
ZINST22 Containment radiation 
WSPRAY PRZ spray flow from RCS loop  
WPRZSV PRZ safety valve flow 
QPRZP Proportional heaters power 
QPRZH Proportional heater fractional power 
QPRZB Back-up heaters power 
PVCT VCT pressure 
PPRZ PRZ pressure 
PPRT PRT pressure 

BPRZSP PRZ spray valve position 
BPORV Power operated relief valve position 
BLV459 Letdown isolation valve position 
BHV6 HV6 valve position 

WPORV PRZ PORV flow rate to PRT 
VCT: Volume Control Tank 
PRT: Pressurizer Relief Tank 
RCS: Reactor Coolant System 

 
3. Results 

 
In this study, in order to compare and evaluate the 

performance of EBM, the performance of the models 
that applied SHAP to each classification model 
generated by LightGBM and DNN was also evaluated. 
LightGBM is a tree-based machine learning model that 
is as accurate as the traditional GBM and 20 times faster 
[4]. This model is useful for processing large amounts 
of data. DNN is an artificial neural network consisting 
of an input layer, a hidden layer, and an output layer. 
DNN can process a variety of data, including images, 
speech, and text. SHAP is a framework for describing 
the output of a black-box model using Shapley values 
[5]. 

Performance evaluation was carried out in three 
ways: 1) accuracy, 2) macro f1-score, and 3) XAI 
execution time of each model. The macro f1-score used 
as an evaluation index can resolve data imbalances that 
cannot be confirmed with accuracy. Macro F1-score is a 
method of extracting and averaging f1-scores for each 
class. F1-score is one of the evaluation indicators 
composed of the recall and precision. The recall and 
precision are composed of true positive (TP), false 
negative (FN), and false positive (FP). Accuracy is also 
used with true negative (TN) including TP, FN and FP. 
Recall, precision, f1-score, macro f1-score, and 
accuracy can be expressed by Eq. (3)-(7). 

 
TPRecall

TP FN
=

+
                         (3) 

TPPrecision
TP FP

=
+

                       (4) 
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We checked the execution time of XAI for each model. 
The standard for execution time is the time required to 
analyze one test data. One test data corresponds to 1 
second of CNS data. Table Ⅲ shows the accuracy and 
macro f1-score for each model. Table IV shows the 
running time of XAI. 
 

Table Ⅱ: Performance evaluation by each model 

 Evaluation metrics 

Model Accuracy Macro f1-score 

EBM 1.00 1.00 

LightGB
M 1.00 1.00 

DNN 1.00 1.00 

 

Table Ⅳ: XAI runtime for each model 

Model XAI runtime 

EBM 0.006sec 

LightGB
M 0.005sec 

DNN 0.647sec 

 
In addition, EBM can explain which features the 

model considers important and which classes each 
feature is highly involved in. Fig. 1 shows which 
features the model considers important by selecting the 
top 15 features. Figs. 2 and 3 explain which classes the 
features are involved in. Figs. 2 and 3 shows the top 2 
features from the features in Fig. 1. 

 

 
 
Fig. 1. The top 15 variables that the trained model 
considers important. 
 

 
 
Fig. 2. The variable that the trained model considers 
most important. 
 

 
 
Fig. 3. The Variables that the trained model considers 
second most important. 
 
The score in Figs. 2 and 3 means the contribution of a 
feature to a class. Density indicates where the values of 
each variable are distributed in the train data. Figs. 4 
and 5 illustrate how much each feature contributed to 
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each class when predicting the data for scenarios 1 and 
7. 
 

 
 
Fig. 4. Explanation of scenario 1 predictions. 

 
 
Fig. 5. Explanation of scenario 7 predictions. 
 

EBM can see how much each feature contributed to 
each class when predicting the scenario. In Figs. 4 and 5, 
we can see that each class prioritized the most important 
features. 
 

4. Conclusions 
 

In this paper, we compared the performance of EBM, 
LightGBM, and DNN models. In addition, we 
compared the XAI execution time of the EBM and the 
models with SHAP added to the LightGBM and DNN 
models to compare the difference when diagnosing 
abnormal conditions in real time. EBM showed the 
same accuracy as the black box model when compared 
to other black box models. We also found that the XAI 
running time of the EBM was 0.641 sec faster than the 
XAI running time of the model applying SHAP to the 
DNN model. When SHAP was applied to LightGBM, 
the XAI execution speed was 0.001sec faster than EBM, 
but it was a very small difference. EBM also showed 
high accuracy and high explainability when compared to 
each model. We were also able to see how EBM 

diagnosed the abnormal state and what variables were 
used to diagnose the abnormal state. This improves the 
intuitiveness of the model and solves the trade-off 
between explainability and accuracy, which is a problem 
of existing AI models. Therefore, the proposed EBM 
model can help NPP operators to trust AI diagnosis 
results in the process of diagnosing abnormal states. If 
this model is applied, it is expected that operators can 
be able to improve the safety of NPPs through quicker 
diagnosis. 
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