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1. Introduction 

 
The effective operation of nuclear power plants is 

crucial for addressing the growing need for eco-friendly 
energy solutions. The OPR1000, developed by the 
Korea Electric Power Corporation (KEPCO), plays a 
significant role in the South Korean nuclear energy 
generation sector [4,5]. Enhancing fuel use is associated 
with key parameters such as the Peaking Factor, which 
governs the maximum power distribution within the 
reactor core, and the Cycle Length, denoting the 
operational period between refueling outages. Accurate 
prediction of these parameters is imperative for 
ensuring the safety and efficacy of nuclear reactor 
operations. 

Traditional methods for estimating Peaking Factors 
and Cycle Lengths rely on numerical simulations or 
empirical techniques. However, these approaches often 
show computational complexity or restricted predictive 
accuracy, hindering the optimization of loading patterns 
- the arrangement of fuel assemblies within the reactor 
core. To address these limitations, machine learning 
models, such as Convolutional Neural Networks (CNN), 
have been introduced [3]. Nevertheless, due to the 
black-box nature of CNN models, the reliability of their 
predictions is still debatable. 

In this paper, we investigate the application of a 
Vision Transformer (ViT) for predicting the Peaking 
Factor and Cycle Length in OPR1000 reactors. ViT has 
shown remarkable potential in addressing intricate 
image recognition challenges. Our primary aim is to use 
the capabilities of ViT to enhance predictive accuracy 
while alleviating the computational burden associated 
with conventional methods. We present a 
comprehensive method for data preparation, model 
architecture, training, and evaluation. 

 
2. Vision Transformer 

 
In this section, we present an overview of the ViT 

and explore its potential as an Explainable Artificial 
Intelligence (XAI) model. 

 
2.1 Development Process of ViT 

 
The ViT is an image recognition adaptation of the 

Transformer model, which was originally designed for 
Natural Language Processing (NLP) tasks. In 

comparison to conventional models such as Recurrent 
Neural Networks (RNN) or Sequence-to-Sequence 
(seq2seq) models, Transformers have proved superior 
performance. Traditional models employ a sequential 
data processing approach to convey word position 
information, which may meet difficulties in capturing 
long-range dependencies between words within a 
sentence. In contrast, the Transformer model eschews 
sequential processing, opting instead for attention 
mechanisms that calculate relationships among all 
elements simultaneously, while encoding the positional 
information for each word. This approach allows the 
Transformer to find relationships between words, even 
in extended sentences, resulting in high performance in 
NLP tasks [1]. 
 

 
 

Fig. 1. Examples of seq2seq and Transformer model 
employed in English to Korean translation systems. In these 
models, individual words transform into vector 
representations, referred to as tokens. Notably, the tokens 
<eos> and <sos> denote ‘End of Sentence’ and ‘Start of 
Sentence,’ respectively, serving as essential markers to help 
the translation process. 

 
Following the success of NLP, scholars postulated 

that the Transformer architecture could potentially show 
powerful performance in image recognition tasks as 
well. For over 3 years, CNN had been the prevailing 
model in this domain. Nonetheless, the performance of 
CNN models reached a plateau, prompting researchers 
to devise larger models in pursuit of enhanced accuracy. 
The ViT, a use of the Transformer architecture for 
image recognition tasks, yielded increased accuracy 
while reducing the computational expenses, such as 
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time and floating-point operations (FLOPs), necessary 
for training the model. Presently, ViT is being 
employed in fields like autonomous vehicles, anomaly 
detection, and medical imaging [2]. 
 

 
 

Fig. 2. Vision Transformer architecture for Image 
Recognition tasks. The Multi-Layered Perceptron (MLP) 
applies in the ViT to change the Encoders output vector to the 
result format. 

 
2.2 ViT as an Explainable Artificial Intelligence 
 

The ViT employs the transformer architecture, 
capitalizing on the self-attention mechanism to 
understand both local and global contexts present 
within an image. This self-attention mechanism 
produces attention maps, supplying valuable 
information about the connections between different 
areas of an image and aiding in the visualization of the 
model's thought process. Furthermore, the modular 
design of the transformer architecture allows the 
integration of diverse explainability techniques. 
Approaches such as layer-wise relevance propagation, 
saliency maps, and attention rollouts may implement in 
ViT to augment the interpretability of the ViT model. 
This improved interpretability enables a more profound 
comprehension of the model's decision-making process 
and cultivates confidence in its predictions [2]. 

 
3. Application of ViT to OPR1000 

 
This section describes the process of employing the 

ViT model for the prediction of Peaking Factors and 
Cycle Lengths in the OPR1000 nuclear power plant. 
The STREAM and RAST-K (ST/RK) nodal diffusion 
code system, developed by UNIST CORE, is used to 
compute the Peaking Factors and Cycle Lengths for the 
loading pattern data. 

 
2.1 Data Preparation Procedure 

 
Effective data preparation is vital for the successful 

implementation of the ViT model. Initially, Nuclear 
Design Reports (NDR) for the 1st and 2nd cycles of 
YONGGWANG Units 3, which are OPR1000 nuclear 

power plants, were collected [4,5]. To integrate the data 
into the ST/RK system, a pin-wise analysis was 
performed, extracting the U-235 enrichment and 
Burnable Poison (BP) fraction for each pin from the 
NDR. It was assumed that all pins in an assembly have 
identical burnup, corresponding to the assembly burnup 
value at the Beginning-of-Cycle (BOC). Subsequently, 
randomized loading patterns were generated as the 
input dataset for the ViT model by introducing minor 
modifications to pin values. 

To adapt the loading pattern parameters for use as 
ViT inputs, the parameters were treated as RGB data: R 
for U-235 enrichment, G for BP fraction, and B for 
burnup. The values were normalized from 0 to 1, with 0 
representing 0 and the maximum values for each 
parameter being 6.0 wt.%, 10.0 wt.%, and 30.0 
MWd/kgU. 

 

 
 

Fig. 3. Example of the Loading Pattern image. RGB values 
of Water holes and the outside of the bare core region set into 
0. 
 

For training ViT models, corresponding output 
datasets need for the input datasets. The input datasets 
were executed using ST/RK to calculate Cycle Lengths 
and Peaking Factors for each loading pattern. The 
output values were normalized from 0 to 1, with 0 
representing 0 and the maximum values for each 
parameter being 600 days and 7.0. 

It is commanding to acknowledge that this study 
employs a dataset of 110,000 samples, which may 
constrain the performance due to the small dataset size. 
Future research and larger datasets may be needed to 
apply the model for practical applications. 

 
2.2 Model Training and Evaluation 

 
After data preparation, the ViT model was trained 

using the generated loading pattern images. The dataset 
was partitioned into training, validation, and testing 
subsets, having 90K, 10K, and 10K samples, 
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respectively. The training subset eases the learning 
process for the ViT model, while the validation subset 
supplies an evaluation of the performance at each stage. 
The testing subset shows the results of the ViT training. 
 

 

 
 

Fig. 4. Distribution of Cycle Length and Peaking Factor 
from the Loading Pattern dataset. The size of the datasets is 
110K, 90K, 10K, and 10K separately. 
 

The optimization process for the ViT model focused 
on minimizing the discrepancies between predicted and 
actual values of Peaking Factors and Cycle Lengths. 
The trained ViT model shows the following 
characteristics: an input image is 128x128 pixels, 
divided into 8x8 pixel patches. Each pixel stands for a 
pin. Each patch transforms into a vector of 256 
dimensions. Other parameters of the model are 
presented in Table I. The optimization process 
employed the Mean Squared Error (MSE) loss function. 

 

Table I: Hyperparameters of the Vision Transformer. 

Attention heads 4 

Encoder layers 3 

 Feed Forward layer 
dimension in Encoder 

128 

Training steps 
1,000 (Cycle Length) 
100 (Peaking Factor) 

 

  
4. Results and Conclusions 

 
In this study, we proved the potential of using the 

ViT model for estimating loading patterns in OPR1000 
nuclear power plants. During the training phase, the 
MSE showed a decreasing trend in Cycle Length and 
Peaking Factor prediction. However, the MSE values 
plateaued, suggesting the limitations of training the 
given model. 
 

 

 
 

Fig. 5. MSE convergence progress predicting Cycle Length 
and Peaking Factor. The Peaking Factor model shows low 
performance than Cycle Length. It postulates that the Peaking 
Factor model requires further optimization to improve 
prediction accuracy. 
 

 
 

Fig. 6. ViT prediction compared with ST/RK calculation. 
The red line stands for identical prediction and calculation 
results. 
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Table II: Root Mean Square (RMS) and Maximum Relative 
Error of the parameters between ST/RK calculation and ViT 

prediction. 

Parameter 
RMS of Rel. Err. 

[%] 
Max. of Rel. Err. 

[%] 
Cycle 

Length 
0.36 3.75 

Peaking 
Factor 

3.92 16.29 

 
Despite the difference in the dataset, the ViT model 

shows comparable prediction accuracy to the CNN 
model [3] while having a significantly low training step 
size, even with an identical dataset size. This finding 
underscores the potential of the ViT model. Two or 
more strategies, such as data augmentation and 
regularization techniques, can be implemented to 
enhance the ViT model performance. These methods 
involve changing input datasets, mitigating overfitting, 
and improving the model accuracy even with limited 
datasets [8]. By integrating these techniques into the 
ViT model, more exact and reliable results for 
predicting Peaking Factors and Cycle Lengths in 
loading patterns can be achieved. 

In summary, our research emphasizes the ViT 
model’s potential for predicting Peaking Factors and 
Cycle Lengths in nuclear power plant operations, 
particularly in the context of the OPR1000. 
Comparisons with traditional methods and CNN models 
are planned for future research. Moreover, more 
investigation and validation are needed to apply the 
model for practical applications within the nuclear 
industry. 

Future research will focus on the application of 
visualization techniques to help better understanding 
and interpretation of the model's predictions. This could 
include interactive visualizations that allow users to 
examine the influence of various input parameters on 
the model's output. For example, the optimization of 
loading patterns using the simulated annealing method 
in conjunction with ViT screening could be a potential 
application. 
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