A Study on Effect of Assembly Power History to Gamma Dose Rate in Spent Fuel Pool at a Short Cooling Time Yunki Jo, Deokjung Lee*

Department of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea

yunki.jo@unist.ac.kr, deokjung@unist.ac.kr

23S-706

Introduction

- The radiation dose rate on the water surface of spent fuel pool must be less than $25 \,\mu$ Sv/hr according to ANSI/ANS 57.1-1992.
- The radiation source terms of spent fuel can be affected by many parameters such as fuel enrichment, assembly burnup, power history, cooling time, etc.
- In this study, tendency of radiation source terms depending on burnup and power history is observed at a short cooling time of 100 hours to consider a refueling situation.

Η

-0.23355

-10⁰

Radiation Source Term Calculation for 3-D Core Model

Assembly-wise burnup and normalized power distribution at end of cycle.

	Н	J	K	L	Μ	Ν	Р	R		Н	J	К	L	Μ	Ν	Р	R	
1	49.1	46.5	47.7		FA-wise Burnup @ EOC 1					0.48	0.48	0.39		FA-wise Power @ EOC				
2	20.8	20.9	20.2	15.7	47.8		(MW	d/kgU)	2	1.21	1.21	1.14	0.90	0.39				
3	43.3	40.7	23.5	52.5	17.2	49.4			3	1.07	1.14	1.30	0.88	1.02	0.44			
4	44.6	24.2	44.5	36.6	21.9	17.2	47.8		4	1.09	1.33	1.05	1.11	1.25	1.02	0.39		
5	23.9	44.0	38.9	42.6	36.6	52.5	15.7		5	1.32	1.08	1.12	1.05	1.11	0.88	0.90		
6	43.4	41.8	23.7	38.9	44.5	23.5	20.2	47.7	6	1.04	1.10	1.32	1.11	1.05	1.30	1.14	0.39	
7	41.0	23.0	41.8	44.0	24.2	40.7	20.9	46.5	7	1.07	1.30	1.10	1.08	1.33	1.14	1.21	0.48	
8	33.8	41.0	43.4	23.9	44.6	43.3	20.8	49.1	8	0.85	1.07	1.04	1.32	1.09	1.07	1.21	0.48	

Assembly-wise radiation source distribution at cooling time of 100 hours.

- Neutron source highly depends on burnup dist. & Gamma source highly depends on power dist.

	Н	J	K	L	Μ	Ν	Ρ	R		Н	J	Κ	L	Μ	Ν	Р	R
1	6.61	5.38	5.70		Neutro	n sourc	e (1E+()8/sec)	1	2.98	2.95	2.46		Gamm	a sourc	e (1E +1	7/sec)
2	0.36	0.37	0.33	0.15	5.84	Tc	Tcool = 100 hrs 2			6.38	6.37	5.99	4.60	2.44	Тс	Tcool = 100	
3	4.78	3.85	0.53	8.42	0.20	6.71		_	3	6.28	6.60	6.95	5.32	5.24	2.72		
4	5.25	0.60	5.19	2.50	0.43	0.20	5.84		4	6.47	7.15	6.23	6.27	6.56	5.24	2.44	
5	0.57	4.97	3.16	4.38	2.50	8.41	0.15		5	7.08	6.36	6.40	6.13	6.27	5.32	4.59	
6	4.87	4.15	0.57	3.16	5.19	0.53	0.33	5.70	6	6.12	6.38	7.04	6.40	6.23	6.95	5.98	2.46
7	3.90	0.50	4.15	4.97	0.60	3.85	0.37	5.38	7	6.17	6.92	6.38	6.36	7.15	6.60	6.38	2.95
8	5.27	3.90	4.87	0.57	5.25	4.78	0.36	6.61	8	5.16	6.17	6.12	7.08	6.47	6.28	6.38	2.98

- Assembly-wise radiation source distribution at cooling time of 20 years.
- Both neutron & gamma sources highly depend on burnup distribution.

Ν

Μ

Codes, Methods & Models

- A deterministic neutron transport code using Method of Characteristics, STREAM is used to calculate radiation source term. It is also used in depletion calculation of 2-D fuel assembly.
- It has a capability to compute radioactivity, decay heat, neutron and gamma source spectra for spent nuclear fuel.
- A Monte Carlo particle transport code MCS is used to 3-D whole core depletion calculation and gamma dose rate calculation in spent fuel pool.
- A weight window (WW) variance reduction technique is used in the gamma dose rate calculation.
- Calculation procedure for dose rate calculation in spent fuel pool.

1	2.16	1.67	1.88	Neutron source (1E+08/sec)						3.10	2.96	3.03	Gamma source (1E+15/sec				5/sec)	
2	0.06	0.06	0.05	0.02	1.93	Тсс	Tcool = 20 years			1.45	1.46	1.41	1.11	3.02	Tco	Tcool = 20 yea		
3	1.35	1.04	0.10	2.70	0.03	2.23			3	2.82	2.69	1.62	3.34	1.21	3.09		_	
4	1.53	0.11	1.51	0.60	0.07	0.03	1.93		4	2.89	1.66	2.88	2.45	1.52	1.21	3.02		
5	0.11	1.43	0.82	1.23	0.60	2.70	0.02		5	1.64	2.87	2.58	2.77	2.45	3.34	1.11		
6	1.38	1.14	0.11	0.82	1.51	0.10	0.05	1.88	6	2.81	2.75	1.63	2.58	2.88	1.62	1.41	3.03	
7	1.04	0.09	1.14	1.43	0.11	1.04	0.06	1.67	7	2.70	1.59	2.75	2.87	1.66	2.69	1.46	2.96	
8	1.60	1.04	1.38	0.11	1.53	1.35	0.06	2.16	8	2.10	2.70	2.81	1.64	2.89	2.82	1.45	3.10	

• Axial power distribution at end of cycle (left) and Gamma source distribution at cooling time of 100 hours (center) & 20 years (right).

- At a short cooling time, the gamma source emission is largely affected by short-lived nuclides in fission products. After few years cooling period, it is mostly affected by long-lived fission products such as Cs-137 ($T_{1/2}$ = 30.1 years)

Radiation Source Term Calculation for 2-D Fuel Assembly

- STREAM is used to depletion & source term calculations for PLUS7 fuel assembly.
- Case 1) Different assembly burnup with the same power density. Power density = 36.85 W/g up to each target burnup (60, 55, 50, 45, 40 MWd/kgU).

Dose Rate Calculation in Spent Fuel Pool

- Gamma source only from the assembly in transit is considered in dose rate calculation. The contribution by gamma from FAs stored at bottom of spent fuel pool are negligible.
- Axial gamma source distribution of selected FAs at cooling time of 100 hours.
- Gamma source spectrum of selected FAs at cooling time of 100 hours.

- About 68% of gamma sources are emitted below 450 keV.

- Most of low energy photons are caused by Np-239 ($T_{1/2}$ = 2.36 d), which is produced in a transmutation process from U-238 to Pu-239 - Spectrum peak at 450-500 keV: Ru-103 ($T_{1/2}$ = 39.2 d) and La-140 ($T_{1/2}$ = 1.68 d) - Spectrum peak at 700-800 keV:

Nb-95 ($T_{1/2}$ = 35 d) and Zr-95 ($T_{1/2}$ = 64 d)

↓ Table: Effect of weight window method in dose rate calculation

	Loc.(cm)	Analog (16.3 ł	nours)	WW (6.89 h	FOM ratio		
-10.1125	84.38	4.6E-9 ±0.5%	74026	4.5E-9 ±0.09%	1.6E+7	75	
	134.38	1.7E-10 <u>+</u> 3%	2533	1.7E-10 ±0.1%	7.1E+6	802	
	184.38	8.9E-12 <u>+</u> 13%	119	8.7E-12 ±0.2%	4.1E+6	7083	
ibly	209.38	1.9E-12 <u>+</u> 33%	19	2.1E-12 <u>+</u> 0.3%	3.3E+6	31207	

- Dose rate of selected FAs (ICRP-116 is used as a photon flux-to-dose conversion factor) - The light purple region between M07 & P04 represents available gamma dose rates.
 - Dose rate from K08* is \sim 1.6 times higher than the one from K08. It is much higher than the one from M07 which has \sim 1.25 times bigger gamma source intensity.

 Case 2) Same assembly burnup with different power history. Power density = 36.85 W/g (0-40 MWd/kgU) \rightarrow 120, 100, 80, 60, 40% of 36.85 W/g (40–60 MWd/kgU)

Conclusion

- At a short cooling period, it is observed that neutron source intensity highly depends on burnup and gamma source intensity highly depends on power history.
- Therefore, not only assembly burnup, but also assembly power history should be carefully considered for the source term and dose rate calculations at a short cooling time such as a refueling period.