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1. Introduction 
 

Neighboring countries have not given up on nuclear 
programs such as nuclear tests and the operation of 
research reactors. One of the detection methods for 
nuclear threats is to measure radioactivity and targets 
radioactive xenon, an inert gas produced by nuclear 
fission that does not occur naturally. Among the 
radioactive Xe isotopes produced by fission, the nuclides 
that can be detected are 135Xe, 133Xe, 133mXe, and 131mXe, 
considering the half-life. However, a process for 
distinguishing sources from measured radioactive Xe 
information has not been established [1]. This study aims 
at determining whether the machine learning model is 
applicable to predict the type of nuclear threat from the 
radioactivity ratio of four radioactive Xe. 

 
2. Methods and Results 

 
The machine learning models used in this study are 

Logistic regression, Support Vector Machine, and K-
Nearest Neighbors. Python was used as the computer 
language, and modules in the scikit-learn package were 
mainly used in relation to machine learning. For learning 
the machine learning model, six types of radioactivity 
ratios (135Xe/133Xe, 133mXe/133mXe, 135Xe/133mXe, 
135Xe/133mXe, 133mXe/133mXe, 133Xe/133mXe) were used as 
input information. The sources of radioactive Xe 
predicted from these ratios were two nuclear tests (Pu 
bomb, U bomb) and four reactors (IRT-2000, MAGNOX, 
PWR, and CANDU). 

 
2.1 Xe Activity Data for Machine Learning Models 

 
Radioactivity data of Xe applied for learning were 

generated in ORIGEN/SCALE and SERPENT codes [2].  
Radioactivity data of radioactive xenon was generated by 
changing various conditions related to nuclear tests and 
reactors. The data for nuclear reactors were generated by 
considering the nuclear fuel assembly types, initial 
composition (i.e. uranium enrichment), burnup, specific 
power, the time interval between cycles, number of 
nuclear cycles, and cooling time after shutdown. Data for 
nuclear test were generated by considering the initial 
composition, nuclear weapon yield, and fractionation 
time of the nuclear bomb according to the specifications 
given by gun type for highly enriched uranium nuclear 
bombs and imposition type for nuclear weapons-grade 
plutonium nuclear bombs. In order to classify using 
machine learning from the data generated in this way, 

analysis and selection of the Xe radioactivity ratio data 
and selecting the data must be preceded for effective use 
in learning.  

According to the results of previous study [3], the 
difference in the separation time (i.e. fractionation time) 
of the parent nuclear species from their daughter ones in 
U bomb and Pu bomb had a significant effect on the Xe 
activity ratio change, while the reactor (PWR, CANDU, 
IRT-2000, MAGNOX) type had a slight effect on the Xe 
activity ratio change even though there were differences 
in composition and specific power. Therefore, 7,520 
datasets generated under the following conditions were 
selected as data to be used for the machine learning 
model: 

 
∙ Pu bomb (2,560 sets) 

- 239Pu content: 93 w/o 
- Nuclear weapon yield: 50 kt 
- Fractionation time: no frac., 1h, 10h, full frac. 

 
∙ U bomb (2,560 sets) 

- Enrichment: 90 w/o 
- Nuclear weapon yield: 20 kt 
- Fractionation time: no frac., 1h, 10h, full frac. 

 
∙ PWR (600 sets) 

- Fuel assembly type: 17×17 
- Enrichment: 4.5 w/o 
- Specific power: 40 MW/t 

 
∙ IRT-2000 (600 sets) 

- Enrichment: 36.15 w/o 
- Specific power: 557 MW/t 

 
∙ MAGNOX (600 sets) 

- Enrichment: 0.71 w/o 
- Specific power: 0.5 MW/t 

 
∙ CANDU (600 sets) 

- Enrichment: 0.71 w/o 
- Specific power: 19.5 MW/t 

 
For the entire selected data set, training data and 

validation data were combined for 70% and the 
remaining 30% were divided into test data, and the ratio 
of each category was maintained the same for all the 
cases. As limited data set was used, model learning and 
model modification were conducted using the K-fold 
cross validation without separating the trained data and 
validation data. 
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2.2 Logistic Regression 
 

Logistic regression is a stochastic model proposed by 
Cox [4] in 1958 that uses regression (a technique of 
finding the correlation between independent and 
dependent variables) to predict the probability of a data 
belonging to a particular category as a value between 0 
and 1 and classify it as the most likely category. The 
basic logistic function is the sigmoid function, and its 
parameter was estimated using cross entropy as a cost 
function as the maximum likelihood estimation. The 
results obtained using test data in Fig. 1 show that the 
accuracy for the entire test data was 73%, with the 
highest probability of accurately classifying Pu bomb at 
89.97%, and the lowest probability of accurately 
classifying PWR at 13.89%. It is also noted that the 
classification of 5MW Yongbyon reactor (designated as 
MAGNOX) has high probability of 79.44% 

 

 

Fig. 1. Results of nuclear threat classification test using 
Logistic Regression. 
 

 

Fig. 2. Results of nuclear threat classification test using 
Support Vector Machine 
 

2.3 Support Vector Machine (SVM) 
 
Developed by Vapnik, SVM is a supervision learning 

technique that allows classification to be performed by 
designing a hyperplane with a maximum margin between 
the decision boundary and the learning data [5]. 
Basically, it is used for binary classification, but using 
the One-versus-the Rest or One-versus-One strategy can 
also be applied to the multiple classifications required in 
this study [6]. For a data set that cannot be linearly 
separated by an SVM, a mapping operation from a low-
dimensional space to a high-dimensional space must be 
performed using a kernel function. In this study, the 
process of finding the optimal function and hyper 
parameter among the following four kernel functions [7] 
was performed, and the accuracy of the validation data 
was the highest using Radial basis function. 

 
∙ Linear function 

    𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = < 𝑥𝑥, 𝑥𝑥𝑖𝑖 > 
 

∙ Polynomial function 
    𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = ( 𝑟𝑟 +  𝛾𝛾 ∙ < 𝑥𝑥, 𝑥𝑥𝑖𝑖 > )𝑑𝑑 

                           (d: degree of kernel function) 
 
∙ Radial basis function 

    𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) =  𝑒𝑒−𝛾𝛾‖𝑥𝑥−𝑥𝑥𝑖𝑖‖2  
 

∙ Sigmoid function 
        𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = tanh (𝛾𝛾 ∙< 𝑥𝑥, 𝑥𝑥𝑖𝑖 >  + 𝛾𝛾) 
 
The predicted results using test data in Fig. 2 show that 

the overall accuracy is 87%, with the highest probability 
of accurately classifying Pu bomb at 97.79%, and the 
lowest probability of accurately classifying CANDU at 
28.33%. Also, the probabilities of classification for U 
bomb and 5 MW Yongbyon reactor are significantly 
improved in comparison with the logistic regression 
cases. 

 

 

Fig. 3. Results of nuclear threat classification test using K-
Nearest Neighbors 
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2.4 K-Nearest Neighbors (KNN) 
 

KNN is a method of finding K data in order of distance 
from a given data and assigning categories of groups to 
which the largest number of data belongs. Since KNN is 
based on a nonparametric method, there is an advantage 
that classification performance is not greatly influenced 
by the distribution type of data. The following five 
distance measurement methods [8] were applied to KNN 
to select the distance measurement method and K value 
with high accuracy for validation data: 

 
∙ Euclidean distance 
       d(A, B) =  �(𝑥𝑥2 − 𝑥𝑥1 )2 +  (𝑦𝑦2 − 𝑦𝑦1)2  
 
∙ Manhattan distance 

 d(A, B) =  |𝑥𝑥1 − 𝑥𝑥2| + |𝑦𝑦1 − 𝑦𝑦2|      
 

∙ Mahalanobis distance 
       d(A, B) =  �(A − B)TΣ−1(A − B) 
                        (Σ: covariance matrix) 
 
∙ Pearson correlation distance 
       d(A, B) = 1 −  ∑ (Ai−A�)(Bi−B�)n

i=1

�∑ (Ai−A�)2n
i=1 ∑ (Bi−B�)2n

i=1

 

                        (n: number of data)  
 
∙ Spearman rank correlation distance 
       d(A, B) = 1 −  6 ∑ (rank(Ai)−rank(Bi))2n

i=1
n(n2−1)

 
 
As a result of the comparative analysis, applying the 

K value of 3 using the Manhattan distance method 
showed the best performance. From the results predicted 
using test data in Fig.3, the overall accuracy was 90%, 
with the highest probability of accurately classifying Pu 
bomb at 96.48%, and the lowest probability of accurately 
classifying PWR at 72.22%. 
 

3. Conclusions 
 

In order to develop a predictive model that can classify 
nuclear threats, three machine learning models have been 
applied. The prediction showed that KNN is relatively 
higher performances than other machine learning models, 
so it is suitable as prediction model of nuclear threat 
types. As there are various machine learning models in 
addition to the three machine learning ones used in this 
paper, it is necessary to find a model with better 
performance through further research. 

Since the machine learning model was developed in 
the context of knowing all four types of radioactive 
xenon, there may be a problem in the substantive 
measurement situation in which only some radioactive 
xenon isotopes are detected. Therefore, further research 
must be needed for developing a predictive model that is 
possible even if information on some of the four 
radionuclides is not available. 
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