A Review on the VHTR PIRT Development Status of Both Regulatory Authority and Licensee

Su Hyun HWANG^{a*}, Seong Su JEON^a, Soon Joon HONG^a, Byung Chul LEE^a, Chang Wook HUH^b, Chang Yong JIN^b, and Kyun-Tae KIM^b

^a FNC Technology Co. Ltd., 135-308, Seoul National University, Daehak-Dong, Gwanak-Gu, Seoul, 151-742, Korea, *shhwang@fnctech.com
^b Korea Institute of Nuclear Safety, 19 Kusong-Dong, Yuseong-Gu, Daejeon 305-338, Korea

1. Introduction

The VHTR (Very High Temperature Reactor) is defined as a helium-cooled, graphite moderated reactor with a core outlet temperature in excess of 900°C and a long-term goal of achieving an outlet temperature of 1000°C. The VHTR is suited for a broad range of applications, including the production of hydrogen and electricity.

The PIRT (Phenomena Identification and Ranking Table) provides a structured means of identifying and analyzing a wide variety of off-normal sequences that potentially challenge the viability of complex technological systems. As applied to VHTR, the PIRT is used to identify a spectrum of safety-related sequences or phenomena that could affect those systems, and to rank order those sequences on the basis of their frequencies, their potential consequences, and state of knowledge related to associate phenomena. It is to be used as an early screening tool to identify, categorize, and characterize phenomena and issues that are potentially important to risk and safety of VHTR.

Since a specific design has not yet been selected for the choice of the US VHTR (NGNP), it was decided early on to focus on a generic plant and reactor design with broadly typical features. Both a generic Pebble Bed Reactor (PBR) design and a generic Prismatic Modular Reactor (PMR) design were selected as the reference plant for KAERI and ANL PIRT [1, 2]. The generic PBR design selected is a version of the 400 MWt South African PBMR design. The generic PMR design selected is a version of the 600 MWt GT-MHR.

The reference plant of NRC PIRT [3] is assumed to be a modular high temperature gas-cooled reactor (HTGR), either a gas-turbine modular helium reactor (GT-MHR) version (a prismatic-core modular reactor-PMR) or a pebble bed modular reactor (PBMR) version (a pebble bed reactor-PBR) design, with either a director indirect-cycle gas turbine (Brayton cycle) system for electric power production, and an indirect-cycle component for hydrogen production.

The difference of VHTR PIRT characteristics among NRC, KAERI and ANL will be reviewed here. The typical shape for each PIRT is shown in Figure 1.

2. Review on the Characteristics of NRC, KAERI, and ANL PIRTs

(a) NRC PIRT Example HPCC LPCC LC Phenomena 2 1 2 1 3 1 2 flow distribution 0 0 0 0 0 0 heat transfer (forced convection) ٥ 0 (b) KAERI PIRT Example Rod Withdrawal Water H₂ Plant Ingress 1 2 ATWS Phenomena Upset 1 2 1
 Water Vapor Partial Pressure
 H
 H

 Mass and Energy Loss through Relief Valve
 H
 H

(c) ANL PIRT Example Figure 1 Examples of NRC, KAERI and ANL PIRTs

The event sequences of KAERI PIRT consist of High Pressure Conduction Cooldown (HPCC), Low Pressure Conduction Cooldown (LPCC), and Load Change (LC). The event sequences of ANL PIRT consist of Water Ingress, Rod Withdrawal ATWS (Anticipated Transient Without Scram), and Hydrogen Plant Upset. On the other hand, the event sequences of NRC PIRT consist of Normal operation, General LOFC (Loss Of Forced Circulation), Pressurized LOFC, Depressurized LOFC, Air ingress LOFC, Reactivity (ATWS), and IHX failure (molten salt). Although there are some differences in the event sequences between NRC and KAERI/ANL, the event sequences except for water ingress can be matched with each other.

For the event sequence of water ingress, steam inleakage from a high-pressure SG would be a dominant risk factor. Otherwise, primary water-cooled heat exchanger secondary systems (in Brayton cycle designs) would run at lower operating pressures and present minimal risks of any substantial water-steam ingress. And NGNP design options with a highpressure steam generator (Rankine cycle) in the primary loop are not considered in NRC PIRT. Hence, water ingress was eliminated from current NRC PIRT.

2.2 System/Component Classification in PIRT

Conventionally, the PIRT for each event sequence is divided by system/component categories. Table 1 shows system/component classification of KAERI/ANL PIRT. The structure of NRC PIRT is different with KAERI/ANL PIRT as shown in Figure 1. The column "Issue" of NRC PIRT contains the phenomena and

2.1 Event Sequences

system/component information together and doesn't distinguish the system/component separately.

Table 1 Sy	/stem/Component Classification		
System	Component		
Reactor Vessel	Inlet Plenum		
	Riser		
	Top Plenum and Components		
	Core & Reflectors		
	Outlet Plenum and Components		
	Lower Head		
	Pressure Boundary		
Reactor Coolant Loop	Hot/Cold Pipe		
	Compressor (Direct) or Circulator (Indirect)		
	Intermediate Heat Exchange and Circulator		
	Mixing Junction (US VHTR)		
Shutdown	Heat Exchanger and Pump		
Cooling System			
RCCS	Reactor Cavity (Confinement)		
	RCCS Tube (Air Duct)		
	RCCS Piping, Air Cooler and Chimney		

	Table 2 KAERI/ANL	Sequence	Phase and	Safety	Criteria
--	-------------------	----------	-----------	--------	----------

Event	Phase	Safety Criteria	
High Pressure	1: Coastdown	Fuel & Vessel Temperature	
Conduction Cooldown	2: Conduction Cooldown		
Low Pressure	1: Blowdown	Fuel & Vessel Temperature	
Conduction	2: Air Ingress		
Cooldown	3: Natural Convection	Temperature	
Load Change	1: Flow Reduction	Logal Hat Smot	
Load Change	2: New Steady State	Local Hot Spot	
Water ingress	1: Pre Turbomachine-Trip	Peak Fuel Temperature Peak Vessel Temperature Confinement Radiation Limits	
	2: Post Turbomachine-Trip		
Rod	1: Pre Turbomachine-Trip		
Withdrawal ATWS	2: Coastdown	Peak Fuel Temperature	
	3: Post Turbomachine-Trip Equilibrium	Vessel Wall Temperature	
Hydrogen Plant Upset	1: Pre Protection-System		
	Trip	Core Outlet Temperature	
	2: Post Protection-System Trip	Vessel Pressure	

2.3 Sequence Phase and Safety Criteria

KAERI/ANL PIRT evaluates the importance level by dividing sequence phase as shown in Figure 1. The safety criteria, which supply the basis for the determination of importance level, are shown in Table 2. But in NRC PIRT, sequence phase is not divided for each event sequence. And NRC PIRT supplies more detailed safety criteria compared with KAERI/ANL PIRT as shown in Table 3.

2.4 Knowledge Level Ranks

Knowledge level and its rationale are supplied in NRC PIRT, but that isn't in KAERI/ANL PIRT. It is described in KAERI report that knowledge level ranking will be carried out later, when the existing experimental and analytical databases will be surveyed and evaluated.

	Table 3 NRC Safety Criteria
PIRT	FOM (Figure of Merit)
Normal operation	- fuel time at temperature - fuel failure fraction
	 core support structures time at temperature
	- vessel and vessel supports temperature
	- RCCS cavity temperature - primary system boundary integrity
	- dose to worker/public
General LOFC	- fuel failure fraction
	 limit vessel temperature vessel and vessel support integrity
	- maintain coolable geometry
	 vessel support temperatures concrete temperature
	- vessel support temperatures
	- concrete temperature

	 vessel support temperatures
	- concrete temperature
	 vessel support temperatures
	- concrete temperature
Pressurized	- fuel temperature
LOFC	- upper vessel support, vessel
	- damage to SCS HX
	- pressure boundary failure
	- dose
Depressurized	- peak fuel temperature
LOFC	 structural integrity of RCCS
	- failure of additional pipes
	- fuel temperature
Air ingress LOFC	- fuel and structural damage
	- fuel failure fraction
	- core, concrete integrity
	- core, core support structure
	- reactor vessel support
	- dose to public
	 Cavity temperature and pressure
	- RCCS integrity
	 vessel support, vessel temperature
Reactivity	- fuel failure fraction
	 corrosion of core supports
(ATWS)	- dose to public
	- core support
IHX failure	- public and worker dose
(molten salt)	- vessel, vessel support, and core support temperatures

3. Conclusion

NRC PIRT doesn't include the detailed phase of event sequence and system/component. And KAERI/ANL PIRT doesn't evaluate knowledge level. The new VHTR PIRT will be developed to obtain the completed PIRT shape by complementing the weakness of the PIRT of NRC, KAERI, and ANL.

REFERENCES

[1] NUREG/CR-6944, Vol. 2, Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs, March, 2008.

[2] KAERI/TR-3050/2005, Generation of a Preliminary PIRT for Very High Temperature Gas-Cooled Reactors, September, 2005.

[3] ANL-GenIV-071, Prioritization of VHTR System Modeling Needs Based on Phenomena Identification, Ranking and Sensitivity Studies, April 2006.