Coherent Calculation for Air-Water Flow and Boiling Flow by Using CUPID Code

Ik Kyu Park ${ }^{\text {a, },}$, Han Young Yoon ${ }^{\text {a }}$, Hyung Kyu Cho ${ }^{\text {a }}$, An Sook, Seol ${ }^{\text {b }}$
${ }^{a}$ Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon, Korea, 305-353
${ }^{b}$ Korea Advanced Institute of Science and Technology, 373-1 Guesong-Dong, Yuseong-Gu, Daejeon 305-701, Korea
*Corresponding author: gosu@kaeri.re.kr

1. Introduction

The Korea Atomic Energy Research Institute has been developing a three-dimensional thermal-hydraulic code, called CUPID, which was motivated from practical needs for the realistic simulation of two-phase flows in nuclear reactor components [1]. This paper presents coherent simulation of an air-water flow test and a sub-cooled boiling flow test, and the model implementation of related to them. The closure relations for the air-water flow and sub-cooled boiling flow are turbulence model, interfacial non-drag force, interfacial condensation, wall evaporation model, interfacial area transport equation, and so on.

2. Mathematical Model

2.1 Governing Equations

The governing equations of the two-fluid, three-field model are similar to those of the time-averaged two-fluid model derived by Ishii and Hibiki [2]. The continuity, momentum, and energy equations for the k-phase are given by

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\alpha_{k} \rho_{k}\right)+\nabla \cdot\left(\alpha_{k} \rho_{k} \underline{u}_{k}\right)=\Gamma_{k}, \tag{1}\\
& \frac{\partial}{\partial t}\left(\alpha_{k} \rho_{k} \underline{u}_{k}\right)+\nabla \cdot\left(\alpha_{k} \rho_{k} \underline{u}_{k} \underline{u}_{k}\right)=-\alpha_{k} \nabla P+\nabla \cdot\left[\alpha_{k} \tau_{k}\right]+\alpha_{k} \rho_{k} \underline{g}, \tag{2}\\
& +P \nabla \alpha_{k}+M_{k}^{\text {mass }}+M_{k}^{\text {drag }}+M_{k}^{\text {VM }}+M_{k}^{\text {non-drag }}, \\
& \frac{\partial}{\partial t}\left[\alpha_{k} \rho_{k} e_{k}\right]+\nabla \cdot\left(\alpha_{k} \rho_{k} e_{k} \underline{u}_{k}\right)=-\nabla \cdot\left(\alpha_{k} q_{k}\right)+\nabla \alpha_{k} \tau_{k}: \nabla \underline{u}_{k} \tag{3}\\
& -P \frac{\partial}{\partial t} \alpha_{k}-P \nabla \cdot\left(\alpha_{k} \underline{u}_{k}\right)+I_{k}+Q^{\prime \prime}{ }_{k}
\end{align*}
$$

where, $\alpha_{k}, \rho_{k}, U_{k}, P_{k}, \Gamma_{k}, I_{k}$ are the k-phase volume fraction, density, velocity, pressure, and an interface mass transfer rate, and energy transfer rate, respectively. M_{k} represents the interfacial momentum transfer due to a mass exchange, a drag force, a virtual mass, and nondrag forces. The non-drag forces are composed of lift force, wall lubrication force[3], turbulence dispersion force[4] as follows.

$$
\begin{align*}
& F_{l i f, l}=\alpha_{g} \rho_{l} C_{L}\left(\vec{u}_{g}-\vec{u}_{l}\right) \otimes\left(\vec{\nabla} \otimes \vec{u}_{l}\right), \tag{4}\\
& \underline{F}_{W L, g}=\frac{\alpha_{g} \rho_{l} C_{W L}\left|\underline{u}_{g}-\underline{u}_{l}\right|^{2}}{D_{b}} \max \left(0, C_{W L 1}+C_{W L 2} \frac{D_{b}}{y_{w}}\right) \vec{n}_{w}, \tag{5}\\
& \underline{F}_{t d, g}=C_{T D} \rho_{l} k_{l} \nabla \alpha_{l} . \tag{6}
\end{align*}
$$

To consider a turbulence effect, the standard k- ε turbulence model was also implemented. For a multidimensional calculation of the IAC (interfacial area concentration), an IAT equation for a boiling flow was derived as follows [5].
$\frac{\partial a_{i}}{\partial t}+\nabla \cdot\left(a_{i} \underline{u}_{g}\right)=\frac{2}{3} \frac{a_{i}}{\alpha_{g} \rho_{g}}\left[\Gamma_{i, g}-\alpha_{g} \frac{d \rho_{g}}{d t}\right]+\phi_{C O}+\phi_{\mathrm{BK}}+\phi_{P H}$.
In the sub-cooled boiling flow, the amount of vapor generation can be computed by a wall heat flux partitioning model. The mechanism of a heat transfer from the wall consist of the surface quenching q_{q}, evaporative heat transfer q_{e}, and single phase convection q_{c} which are basically included in the CFX-4 code[6] as follows.
$q_{q}=\left(\frac{2}{\sqrt{\pi}} \sqrt{t_{w} k_{f} \rho_{f} C_{p f}} f\right) A_{2 f}\left(T_{w}-T_{f}\right)$,
$q_{e}=N^{\prime \prime} f\left(\frac{\pi}{6} D_{d}^{3}\right) \rho_{g} h_{f g}$,
$q_{c}=h_{c} A_{1 f}\left(T_{w}-T_{f}\right)$.

3. Validation

3.1 Simulation of Air-Water Flow

The test section of Bankoff's test[7] is a $2.8-\mathrm{m}$ tube with a diameter of 0.04 m . The only single mesh of 15° was used for the theta direction, and the symmetric boundary condition was used for the rest part as shown in Fig. 1(a). $24 \times 1 \times 100$ grids were used for r, θ, z coordinates as shown in Fig. 1(b). The air-water mixture with a void fraction of 0.1 was injected into the bottom and the mixture flew out from the upper part. The system pressure is 1.0 bar.

Fig. 1 Geometrical and mesh condition for Bankoff's test

Fig. 2 Gas volume fraction at Bankoff's test
The null transient calculation was done and the steady solution could be obtained at 10 seconds. The calculated gas volume fractions are compared to the measured ones in Fig. 2. The x -direction of those figures is the distance from tube center to the wall. The calculated gas volume fractions are very similar in the overall shape. The calculated void fraction is lower at center than the measured one.

3.2 Simulation of Subcooled Boiling Flow

The inner diameter of the SUBO test section[8] is 35.5 mm , and the outer diameter of the heater rod is 9.98 mm as shown in Fig. 2(1). The calculation domain is a pillar with a fan-shape base area as shown in Fig. 2(b) and symmetric boundary condition was used for considering the tube. $12 \times 1 \times 100$ grids were used for $\mathrm{r}, \theta, \mathrm{z}$ coordinates as shown in Fig. 2(c). BASE-RB of SUBO test was selected for the base calculation set. The 374.65 $\mathrm{K}, 1.939 \mathrm{bar}, 943.9 \mathrm{~kg} / \mathrm{m}^{3}$ water is injected into the inlet. The outlet was set to constant pressure boundary of 1.573 bar. The heat flux from the heated wall is 473.7 $\mathrm{kW} / \mathrm{m}^{2}$.

Fig. 3 Calculation domain for SUBO test: (a)schematic diagram (b)geometry (c) mesh.

The null transient calculation was done and the steady solution could be obtained at 10 seconds. The calculated gas volume fractions are compared to the measured ones in Fig. 4. The x-direction of those figures is the distance from the heated wall. The calculated gas volume fractions are similar to measured ones except first level
and sixth level. This means that the evaporation is faster and the condensation is bigger in the calculation than in the experiment. The void peak near wall is much higher in the calculation mainly due to too smaller bubbles.

3. Conclusions

This paper presents coherent simulation of an airwater flow and a sub-cooled boiling flow tests and the model implementation of related to them. The results are not bad, but some improvement should be done in the area of the interfacial area transport equation and the lift force coefficient model.

Fig. 4 Gas volume fraction at SUBO-BASE-RB.

ACKNOWLEDGEMENTS

This work was supported by the Nuclear Research \& Development Program of the Korea Science and Engineering Foundation (KOSEF) grant funded by the South Korean government (MEST).(grant code: M M20702040002-08M0204-00210):

REFERENCES

[1] J. J. Jeong, H. Y. Yoon, I. K. Park, H. K. Cho, and H. D. Lee, Development and Preliminary Assessment of a ThreeDimensional Thermal Hydraulics Code, CUPID, NET, Vol. 42, No.3, P. 279, 2010.
[2] M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of TwoPhase Flow, Springer Inc., New York, p. 217, 2006.
[3] S. P. Antal, R T. Lahey, J. E. Flaherty, "Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow, Int. J. of Multiphase Flow, 7, p.635, 1991.
[4] M. Lopez de Bertodano, Turbulent Bubbly Two-Phase Flow in a Triangular Duct, Ph. D., Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1992.
[5] W. Yao, C. Morel, Volumetric Interfacial Area Prediction in Upward Bubbly Two-phase Flow, Int. J. Heat and Mass Transfer, Vol. 47, p. 307, 2004.
[6] AEA, CFX-4 Solver Manual, UK, 1997.
[7] T.J. LiU and S.G. Bankoff, Structure of air-water bubbly flow in a vertical pipe - II. Void fraction, bubble velocity and bubble size distribution, Int. J. of Heat and Mass Transfer, Vol 36, No. 4. pp. 1061-1072, 1993.
[8]B. J. Yun, B. U. Bae, D. J. Euh, G. C. Park, C.-H. Song, Characteristic of the Local Bubble Parameters of a Subcooled Boiling Flow in an Annulus, doi:10.1016/j.nucengdes. 2009.11.14.

