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1. Introduction 

 

In a previous paper “A case study of inaccuracy of 

advanced SAM application in the OPR1000" [1] 

(submitted at the KNS spring meeting on May 27, 2011), 

KHNP addressed the inaccuracy of the Shape Annealing 

Matrix (SAM) using the Constrained Simulated 

Annealing Method (CSAM). Because the data obtained 

by the ex-core detector is based on the assumption that 

the signal is linear at each power level, the SAM will 

inherently be inaccurate if the signal includes a little 

noise. To address this situation, KHNP tried to enhance 

the reliability and operational margin of OPR1000 by 

optimizing the computerized code used in the SAM 

calculation. In this paper, KHNP selected two factors 

which affect the SAM calculation in the CSAM 

algorithm and reflected them in the computerized code. 

KHNP then re-calculated the SAM using the beginning 

of cycle (BOC) data, which CPC axial power shape 

deviation had increased in the End of Cycle (EOC), and 

simulated the CPC axial power shape deviation. 

  

2. Optimization of CEFAST calculating SAM 

 

2.1 Simulated Annealing Method used in the CEFAST
i
 

Equation (1) is the cost function of the Simulated 

Annealing Method. The Si value is the solution when the 

E(Si) value is minimum [2]. 
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Where,   D: detector signal 

P: Peripheral Power 

 

Simulated Annealing (SA) is a random-search 

technique which exploits an analogy between the way in 

which a metal cools and freezes into a minimum energy 

crystalline structure (the annealing process) and the 

search for a minimum in a more general system. SA 

forms the basis of an optimization technique for 

combinatorial and other problems. The SA algorithm is 

performed for the each coordinate axis by the random 

walk. The above method enables the solution to access 

the global minima from the local minima. SA can be 

determined by the following equation if it is formulated 

to solve the non-linear optimization problem with the 

constrained range. 

 

                                                 
i
 The  Computerized code calculating SAM 
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Where, E(x): cost function 

bi: the upper and lower limit of variable x 

 

SA can find the solution at the random point within the 

concerned range. Let this point be Xold and the cost 

function of this time be Eold. After that, run the random 

walk. Let the new point be Xnew and the cost function of 

this time be Enew. Here, we can define the difference 

between via:  
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Also, using E∆ , we can define the probability P as: 
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where, bk  : Boltzmann constant 

T : Temperature 

 

The SA algorithm compares P with r, which is a random 

number between 0 and 1. According to whether P is 

larger or smaller than r, Xnew is received or not. That is, 

if P is larger than r, Xnew is considered to be the new 

solution. T is the control variable labeled as temperature. 

Like equation (4), P can be controlled through T. The 

larger the value of T, the larger the value of P, where P 

represents the probability to be received as the starting 

point. If the starting point is decided, SA continues to 

renew the solution in the same way.  

 

2.2 Sensitivity analysis for impacting factors 

 

Therefore, the factors affecting the solution were 

considered and a sensitivity analysis was performed. T 

and random walk are used as iteration numbers, while bi 
is the upper and lower limit to search the solution. 

KHNP reasonably modified the factors and re-

calculated SAM. Also, the effect that the re-calculated 

SAM had on EOC CPC axial power shape deviation 

was evaluated, and the results are as follows: 

 

Case Impacting factor* 
CPC axial power shape deviation** 

Ch. A Ch. B Ch. C Ch. D 

1 

Iteration 

number 

150 

times 
7.5345 7.6246 7.5571 6.9317 

2 
175 

times 
7.7655 5.9939 8.5094 9.1105 

3 
225 

times 
8.9414 6.2038 6.9244 8.3256 
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4 
245 

times 
7.7640 5.9939 8.8350 9.1105 

5 
upper and 

lower 

limit 

±100 7.1646 6.2407 6.9939 7.2700 

6 ±10 6.7621 5.3482 5.9536 6.2307 

Table 1. CPC axial power shape deviation according to 

the impacting factors 

* Original iteration number before modification: 125 

times 

* Original upper and lower limit before modification: 

±1,000 

** Original CPC axial power shape deviation before 

modification  

→ Ch. A : 8.0421%, Ch. B : 6.2898, Ch. C : 6.1549, Ch. 

D : 8.9441 

 

 
Figure1. CPC axial power shape deviation trend before 

modification 

 

 

 
Figure 2. CPC axial power shape deviation trend after 

modification. 

 

As shown in Table 1 and Figures 1 and 2, case 6 has 

the lowest deviation. On the other hand, the result of the 

case with the modified iteration number is inconsistent 

and has little reducing effect. Namely, the case with the 

upper and lower limit modified to ±10 is most effective. 

Finally, the CPC axial power shape deviation is reduced 

by about 15% by modifying the upper and lower limit.  

 

3. Conclusion 

 

After previously raising the issue of the inaccuracy of 

SAM using CSAM, KHNP has attempted to solve this 

problem in the CSAM algorithm. In the point of the 

CSAM algorithm, two impacting factors were drawn 

and a sensitivity analysis for those factors was 

performed. The analysis results show that modifying the 

upper and lower limit produces the largest effect, and 

that the effect for CPC axial power shape deviation was 

about 15%. 
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