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1. Introduction 
 

The Supercritical CO2 Brayton Cycle (S-CO2 Cycle) 
has been gaining substantial interest for applying the 
technology to the next generation nuclear systems due 
to its high efficiency and compactness. The cycle gains 
high efficiency owing to low compressor work which 
originates from non-linear property variation of CO2 
near the critical point. Therefore, the design of a main 
compressor becomes important to ensure high 
efficiency of the cycle [1]. In this paper, the design 
methodology of S-CO2 Cycle turbomachineries will be 
briefly discussed in the viewpoint of non-linear 
property variation of the fluid. 

 
Fig. 1. S-CO2 Recompressing Cycle layout and operating 
points 

 
2. Design Methods 

 
Existing generally accepted design methodologies of 

turbomachineries usually assume either ideal 
incompressible fluid (water case) or ideal gas (air case). 
However, in the S-CO2 Cycle the non-linear property 
variation becomes significant and therefore, both 
assumptions can lead to erroneous results.  

 
2.1 Stagnation-to-Static  

 
When designing turbomachineries, both stagnation 

and static conditions of fluid are equally important. 
This is because many state variables (e.g. enthalpy, 
entropy, etc.) are based on the stagnation conditions 
while fluid properties (e.g. density, specific heat, etc.) 
are based on the static conditions. The stagnation 
enthalpy is summation of static enthalpy and the fluid 
kinetic energy (Eq.(1)).  
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2Vhh so +=     (1) 

 
The stagnation condition is defined when the fluid at 

rest (at static condition) is adiabatically and reversibly 

(isentropic) accelerated to velocity V. For an ideal gas 
assumption following relations hold between stagnation 
(subscript o) and static conditions (subscript s). 
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where, T: temperature, P: pressure, Cp: specific heat, V: 
flow velocity, γ : ratio of specific heats, M: Mach 
number.  

However, to reflect real gas properties with high 
non-linearity variation, equations (2) and (3) are not 
applicable [2]. This is because the specific heat ratio is 
not a constant near the critical point as it is shown in 
Fig. 2. Thus, the static condition should be calculated 
from the stagnation condition based on the original 
definition with property package which is graphically 
introduced in Fig. 3. 
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Fig. 2. Ratio of specific heats variation near critical points   
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Fig. 3. Finding static condition from stagnation condition 
using property package 

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October  27-28, 2011



 
2.2 Axial and Radial Turbomachinery Design Methods 
 

The mass conservation and Euler equations are 
always applicable regardless of ideal gas or real gas 
conditions. Therefore, the most basic equations for 
designing turbomachineries based on 1-D mean line 
analysis are the following: 

 
( )AVPhm ss ,ρ=&    (4) 

 
112212 θθ VUVUhh oo −=−   (5) 

 
where m& : mass flow rate, A: flow area, U: rotor speed 

However, since not all work done to or by fluid are 
isentropic since some losses are always involved during 
the process. Regarding the losses in a turbomachinery 
there are two types of losses that can be defined: 
Pressure losses and Enthalpy losses. These losses carry 
the same meaning which indicates how much the 
process in a turbomachinery departs from the ideal 
(isentropic) machine. By selecting appropriate sets of 
loss models for each turbomachinery: (1) axial 
compressor, (2) axial turbine, (3) radial compressor, 
and (4) radial turbine, all axial type turbomachineries 
are based on enthalpy loss models while loss models for 
radial type turbomachineries are pressure loss models. 
The difference in these two loss models are shown in 
Fig.4. 
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Fig. 4. Applying loss models to identify the irreversibility in 
axial (left) type and radial (right) type compressors 

 
Based on the abovementioned equations and loss 

models, a turbomachinery design code that can design 
and predict off-design performance for both axial and 
radial type S-CO2 cycle components was written in 
MATLAB environment. The flowchart of the 
Turbo_Design code is shown in Fig. 5. 

 
3. Results & Summary 

 
Fig. 6 summarizes a sample calculation results for 

10 stage axial compressor. The designed geometry and 
the trend of the turbomachinery off-design map are 
similar to Ref. [2]. Thorough Validation and 
Verification of the Turbo_Design code will be followed 
in near future. Furthermore, detail comparison of axial 
type turbomachineries to radial type turbomachineries 
in the S-CO2 cycle will be performed to identify the 

best suitable type for the cycle.  
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turbomachinery type
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Stage Design
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Loss_Models
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Plot_Functions
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Fig. 5. Flowchart of the Turbo_Design program 
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Fig. 6. Sample calculation result for 10 stage axial type 
compressor  
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