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Challenges in severe accident prediction 

1) Severe accidents are highly nonlinear and chaotic. 

2) DSA & PSA-based methods require large computational resources. 

3) Need to develop an alternative method that can incorporate uncertainties with fewer 

computational resources. 

Fig. 1. Development of a data-driven surrogate model 
(From 2020 K-CLOUD project “Feasibility study of applying AI algorithms 
in response to severe accident”) 



Introduction 
Motivation 

Sensitivity to time resolution in time series forecasting 

 Why time resolution matters 

• In our previous study, the surrogate models were developed based on hourly datasets. 

• Predicting the progression of an accident scenario with high time resolution is important. 

 Previous studies 

• Unclear relationship between the time resolution and the prediction performance 

• Ex) Predicting residential energy consumption using supervised learning techniques based on rolling 
window method 
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*T.-Y. Kim, S.-B.Cho, Predicting residential energy consumption using CNN-
LSTM neural networks, Energy 182 (2019). 
https://doi.org/10.1016/j.energy.2019.05.230  

Q 

Table 1. Prediction performance of various supervised 
learning model with time resolution change. 

∆𝑡 

Time resolution 
increase 

Prediction error 
increase 

https://doi.org/10.1016/j.energy.2019.05.230


Introduction 
Research objectives 

Main Goals 

The main goals of our study are to elucidate the following: 

1) Applicability of deep neural network (DNN) to predicting the progression of a severe 

accident scenario 

2) Optimal DNN architecture for time series forecasting 

3) Effect of time resolution on the surrogate models’ prediction accuracy 
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Fig. 2. Deep Neural Network (DNN) 

∆𝑡 

Fig. 3. Time resolution (∆𝑡) of a time series 
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Methodology 
Selection of Accident Scenario 

Accident Scenario  

 Reference reactor type: OPR1000 

 Total-Loss-of-Component-Cooling-Water (TLOCCW) accident 

• Multiple failures in the safety components lead to reactor core damage 

• High accident frequency (OPR1000 Level 2 PSA report) 

 Duration of a single accident scenario: 72 hr (=PSA mission time) 
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# Mitigation Strategy 

SAMG-01 
Steam generator (SG) 

external injection 

SAMG-02 
Reactor coolant system (RCS) 

depressurization 

SAMG-03 RCS external injection 

Table 2. Types of mitigation strategies 
 (OPR1000 Severe Accident Management 

Guidelines) 

Fig. 4. Locations of component failure at OPR1000 
system 

*RCP = Reactor Coolant Pump 
*HX = Heat Exchanger 
*HPI = High-Pressure Injection 
*LPI = Low-Pressure Injection 
*CSS = Containment Spray System 
*MDAFW = Motor-Driven Auxiliary Feedwater 
*CHP = Charging Pump 
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Dataset production 

RCP seal LOCA 

HX 

HPI pump 

LPI pump 

CSS pump 

MDAFW pump 

CHP 

SAMG-01 

SAMG-02 

SAMG-03 

Component failure/ 

SAMG activation 

12,121 
accident 
scenarios 

MAAP 5.03 
Code 

Primary system pressure 

Cold leg temperature 

Hot leg temperature 

RV water level 

SG pressure 

SG water level 

Max. core exit 
temperature 

Containment pressure 

Pressurizer pressure 

Pressurizer water level 

TH variables 

*Observable from the MCR and 
SAMG supervisory variables 

Fail at t = 1hr 

Fail or not? 

Fail or not? 

Fail or not? 

Fail or not? 

Fail or not? 

Fail or not? 

Fig. 5. Location of TH variables at OPR1000 

*CTMT = Containment 
*RV = Reactor Vessel 

Activate or not? 

Activate or not? 

Activate or not? 
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Dataset post-processing 

x 12,121 scenarios 

t = 0 

TH variables Component failure SAMG 

t = 5 min 

t = 10 min 

t = 72 hr 

MinMaxScaler 
(normalization) 
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Process the time series datasets into 
three different time steps 

Original 
MAAP 

dataset 

∆t = 15 min 
∆t = 30 min 
∆t = 60 min 
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Structure of the Deep Neural Network (DNN) 

 Goal 

• Develop a data-driven model based on a deep neural network architecture 

• quickly predict the important TH variables of a NPP during a accident scenario 

 Advantage of DNN 

• Excellent interpretability on non-linear relationships between the input variables 

 Method 

• Train the DNN model using the accident data produced by MAAP code 

Fig. 6. Structure of the DNN models 

Use the previous 
three time steps to 
predict the next 
time step 

Output=TH 
variables at the 
next time step 
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Structure inside the hidden layers 

1. Convolutional Neural Network (CNN) 

2. Long-term Short Memory (LSTM) 

3. Combination of CNN and LSTM (CNN-LSTM) 

Fig. 7. Structure of the hidden layers inside the DNN 
models 

Image processing, feature extraction 

Time series forecasting, natural language processing 

Number of filters/neurons Activation function 
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Training method 

 Hold-out validation 

• Divide the datasets into (training set) : (validation set) : (test set) = 7:2:1 

 Early stopping method - When to terminate the training process? 

• If the validation set’s mean squared error is not improving for 5 epochs 

 Machine learning library: Python tensorflow, keras (ver. 2.12.0) 

Test method 

Q) Which metrics/measures would be suitable for comprehensively evaluating our models? 

Table 3. Model performance indicators  

Mean Absolute Error (MAE) Euclidean Distance (ED) 

How well the model predicts the TH variables 
at the next time step 

Full-scenario prediction performance 

𝑀𝐴𝐸 =
1

𝑁𝑇𝐻
 𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑀𝐴𝐴𝑃,𝑖

𝑁𝑇𝐻

𝑖=1

 

NTH = number of TH variables 
ypred,i = TH variable i predicted by surrogate 

yMAAP,i = TH variable i predicted by MAAP 

𝐸𝐷𝑖 =
1

𝑁𝑑𝑎𝑡𝑎
 𝑦 𝑡 𝑝𝑟𝑒𝑑,𝑖 − 𝑦 𝑡 𝑀𝐴𝐴𝑃,𝑖

𝑁𝑑𝑎𝑡𝑎

𝑡=1

 

𝑁𝑑𝑎𝑡𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

𝑦 𝑡 𝑝𝑟𝑒𝑑,𝑖 

𝑦 𝑡 𝑀𝐴𝐴𝑃,𝑖 
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1. As time resolution increases (smaller ∆t), MAE decreases. 

2. CNN-LSTM model has the smallest MAE. 

3. LSTM model’s performance is relatively sensitive to the change in ∆t. 

Results and Discussion 
Comparison of MAE 
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MAE comparison - three time steps, three DNN architectures 
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Euclidean distance comparison – CNN, LSTM models 
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Euclidean distance comparison – CNN-LSTM model 
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General Observations 

1. As time resolution increases (smaller ∆t), 

Euclidean distances increase. 

2. Generally, CNN-LSTM model has the 

smallest Euclidean distances. 

3. Reactor vessel water level and 

containment pressure are relatively 

sensitive to ∆t. 
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Component/SAMG time [hr] 
RCP seal LOCA 1 
HX - 
HPI pump 52 
LPI pump - 
CSS pump - 
MDAFW pump 14 
CHP 63 
SAMG-01 - 
SAMG-02 34 
SAMG-03 - Accumulation of error - CNN-LSTM model at a specific accident scenario 

• As the time resolution increases, the speed of error accumulation becomes faster. 

• Rolling window forecasting method → Repeated calculations at high-resolution 
models → large deviations from the MAAP data as time passes. 



04 
CONCLUSIONS 

19 



Conclusions 
Summary 
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Effect of time resolution on the regression performance 

• The regression performance of a model was evaluated by mean absolute error (MAE). 

• At all models, MAE decreased as the time resolution was enhanced to 15 min. 

• The amount of error reduction was the largest at the LSTM model. 

Search for the best DNN architecture 

• Comparison of CNN, LSTM, CNN-LSTM architectures 

• CNN-LSTM model had both the smallest MAE and Euclidean distances. 

1 

2 

3 Effect of time resolution on the full-scenario prediction performance 

• The full-scenario prediction performance was evaluated by the Euclidean distances 
between the predicted values and the MAAP simulation results. 

• The Euclidean distances increased as the time resolution was enhanced to 15 min. at 
all models. 

→ Reason: error accumulated by repeated calculations at high-resolution models 



Conclusions 
Limitations and Further Works 

Add input variables related to the containment integrity 

• To expand the model’s prediction scope up to the containment level 

• To increase the prediction accuracy, more input variables may be needed. 

Ex) hydrogen concentration, fission product concentration 

Hyperparameter optimization 

• Current models share the same hyperparameters (e.g., number of nodes, batch size, 
learning rate, etc.) 

• Optimize the hyperparameters for different time resolutions (Usually, the size of the 
model should be increased with increasing training dataset). 

1 

2 

3 Search for the optimal time resolution 

• The conclusion of this study is that increasing the time resolution can have an adverse 
effect on the full-scenario prediction performance. 

• Then, what would be the optimal time resolution? 

• Search for methods to mitigate the penalties rooting from the stacking of calculation 
errors. 
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