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1. Introduction 

 
A severe accident refers to a rare event in a nuclear 

power plant (NPP) where multiple safety systems fail to 

prevent the core from overheating, leading to the melting 

of nuclear fuel and potential breaches of the containment 

system. These types of accidents are highly nonlinear 

and complex in nature, as they involve multiple safety 

component failures and intricate processes. The nuclear 

industry is utilizing advanced modeling techniques, such 

as MAAP and MELCOR computer codes to model the 

progression of severe accidents in light water reactors. 

However, these computer codes usually involve big 

computational resources and time. With this background, 

supervised learning has been proposed as a promising 

method for predicting a nuclear facility’s behavior 

during accident scenarios. Among the various supervised 

learning techniques, deep neural network (DNN) has an 

outstanding capability to comprehend the nonlinear 

characteristics of a given data. 

The authors’ research team has previously applied 

DNN to predict the system behavior in a loss-of-

component-cooling-water (LOCCW) accident, based on 

a rolling window forecast method [1]. The rolling 

window forecast method is a time series forecasting 

technique where a fixed-size window moves through the 

historical data one step at a time. At each step, a model 

is trained on the data within the window, and the forecast 

is made for the next time point.  

Using the surrogate model developed from the 

previous study, this study is focused on investigating the 

effect of time resolution on prediction accuracy. If the 

time resolution of the input data increases (that is, the 

size of each time step is decreased), it is intuitively 

expected that the surrogate models predict the system 

behavior more accurately. However, several studies on 

the effect of time resolution on the performance of time 

series forecasting models have produced dissimilar 

results from this expectation. T. Kim and S. Cho have 

proposed a CNN-LSTM neural network using the rolling 

window forecasting method to predict residential energy 

consumption [2]. They have tested various units for the 

residential energy data, ranging from minutes to weeks. 

As a result, the prediction error has increased as the time 

resolution increases. S. Bu and S. Cho have also tested 

various supervised learning techniques at various time 

resolutions to predict residential energy consumption [3]. 

They have found that the time resolution and prediction 

error do not necessarily have a linear relationship. These 

research results raise the question of whether increasing 

the time resolution of the severe accident data can 

enhance the prediction performance of the surrogate 

model. In this light, the main objective of this study is to 

develop surrogate models for various time resolutions 

and compare their performance for predicting the 

progression of LOCCW accident scenarios.  

 

2. Methodology 

 

2.1 Selection of accident scenario 

 

This study focuses on a possible LOCCW accident 

scenario at OPR1000. In the previous study [1], it has 

been identified that the product of the frequency of a 

plant damage state (PDS) and its fraction is the largest at 

a total LOCCW accident (TLOCCW). In a TLOCCW 

accident, all seven safety-related components (listed in 

TABLE I) fail. However, to pinpoint the component 

most influencing the accident progression, the analysis 

also considers a subset of TLOCCW accidents. When 

generating the LOCCW accident scenarios, the safety 

components' failure times, except for the RCP seal 

LOCA, were assumed to be uniformly random. 

Approximately 89.2% of the scenarios featured the RCP 

seal LOCA occurring at 1 hour.  

 
Table I: List of safety components that fail at TLOCCW 

Reactor coolant pump (RCP) seal LOCA 

Letdown heat exchanger (HX) 

High-pressure injection (HPI) pump 

Low-pressure injection (LPI) pump 

Containment spray system (CSS) pump 

Motor-driven auxiliary feedwater (MDAFW) pump 

Charging pump (CHP) 

 

Other than the component failures, accident mitigation 

strategies are also considered. Three mitigation strategies 

from the severe accident management guidelines 

(SAMGs) were selected: SG injection (M1), RCS 

depressurization (M2), and RCS injection (M3). These 

strategies are assumed to be activated randomly in time 

throughout the 72-hour accident.  

 

2.2 Dataset production and post-processing 
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To simulate the proposed accident scenarios, MAAP 

5.03 code was used. The MAAP code predicts the 

progression of a severe accident scenario for 72 hours, 

printing out various thermal-hydraulic (TH) variables as 

a function of time. Among them, ten TH variables that 

are monitored in the main control room (MCR) were 

selected as the target variables (see TABLE Ⅱ). These 

variables were considered as the minimum required 

information for the surrogate model to predict the plant 

state. In summary, a single accident scenario dataset is 

composed of ten-time series ranging from 0 to 72 hours 

after the accident initiation. The whole dataset is 

composed of a random mixture of 11,800 LOCCW 

accident scenarios and 1,121 TLOCCW accident 

scenarios.  
Table Ⅱ: List of target TH variables 

Primary system pressure 

Hot leg temperature 

Cold leg temperature 

Reactor vessel water level (RV WL) 

Steam generator pressure (SG P) 

Steam generator water level (SG WL) 

Maximum core exit temperature (Max CET) 

Containment pressure (CTMT P) 

Pressurizer water level (PZR WL) 

Pressurizer pressure (PZR P) 

 

Next, the dataset is normalized so that the values fall 

into the range between zero and one. The scaling process 

is necessary since each TH variable has different scales 

and units. As the main objective of this study is to 

investigate the effect of time resolution, datasets 

composed of different time resolutions should be 

prepared. Thus, the normalized MAAP dataset is 

processed into three different datasets in 60, 30, and 15-

minute intervals.  

 

2.3 Structure of the surrogate models 

 

Before the accident dataset is fed into the surrogate 

models, the DNN models are constructed. In this study, 

three types of DNN architecture are tested: 

Convolutional Neural Network (CNN), Long Short-

Term Memory (LSTM), and CNN-LSTM. The general 

structure of the three architectures is similar (see Fig. 1). 

 
Fig. 1. General structure of the surrogate models 

 

 The input layer receives an input dataset composed 

of 10 TH variables, 7 component failure times, and 3 

SAMG activation times at the previous 3-time steps (𝑡 −
2, 𝑡 − 1,  𝑡). The hidden layer is composed of various 

neural network layers, depending on the type of DNN. 

Then, the 10 TH variables at the next time step (𝑡 + 1) 

are displayed through the output layer.  

The structure inside the hidden layers of each DNN 

model, such as the layer type, number of filters/nodes, 

and activation function, is described in Fig. 2. CNN is 

specialized in computer vision tasks and feature 

extraction, while LSTM is effective in time series 

forecasting and natural language processing. By stacking 

the CNN and LSTM layers, the model is deepened, thus 

enabling the model to capture the nonlinear relationship 

between the input variables.[2]  

 
Fig. 2. Structure of the hidden layers inside the surrogate 

models 

 

2.4 Training and test methods 

 

The 60, 30, and 15-minute datasets are divided into 

training set (70%), validation set (20%), and test set 

(10%). The training set is fed into the DNN models to 

train the models, while the validation set is used to 

validate the trained model. Next, the performance of the 

surrogate model is evaluated using the test sets.  

The performance of the models is evaluated with two 

different indexes: mean absolute error (MAE) and 

Euclidean distance. MAE is an average of the absolute 

differences between the TH variables predicted by a 

surrogate model and MAAP code (see Eq. (1)). 

 

𝑀𝐴𝐸 =
1

𝑁𝑇𝐻

∑|𝑦𝑝𝑟𝑒𝑑,𝑖 − 𝑦𝑀𝐴𝐴𝑃,𝑖|

𝑁𝑇𝐻

𝑖=1

 𝐸𝑞. (1) 

𝑤ℎ𝑒𝑟𝑒 𝑁𝑇𝐻 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 
𝑦𝑝𝑟𝑒𝑑,𝑖 = 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 

𝑦𝑀𝐴𝐴𝑃,𝑖 = 𝑇𝐻 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑏𝑦 𝑀𝐴𝐴𝑃 

 

While MAE describes the mean error in predicting the 

TH variables at the next time step, the Euclidean distance 

(𝐸𝐷𝑖 ) shows the average regression performance for a 

specific TH variable 𝑖 within a scenario (see Eq. (2)). 

 

𝐸𝐷𝑖 =
1

𝑁𝑑𝑎𝑡𝑎

∑ |𝑦(𝑡)𝑝𝑟𝑒𝑑,𝑖 − 𝑦(𝑡)𝑀𝐴𝐴𝑃,𝑖|

𝑁𝑑𝑎𝑡𝑎

𝑡=1

 𝐸𝑞. (2) 

 
𝑤ℎ𝑒𝑟𝑒 𝑁𝑑𝑎𝑡𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛 𝑜𝑛𝑒 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

 

As three types of DNN models are trained with three 

different time resolution data, a total of nine surrogate 

models are developed.  
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3. Results and Discussion 

 

3.1 Comparison of MAE 

 

First, the next-step prediction error is discussed by 

comparing the MAE values. The MAE between the test 

set generated by MAAP code and the predicted data 

generated by each surrogate model is plotted in Fig. 4. At 

every time resolution, the CNN-LSTM model had the 

smallest MAE. Such a result demonstrates the superiority 

of the CNN-LSTM model in forecasting complex time 

series data, which has been reported by multiple studies 

[2, 4, 5]. 

As the time step is decreased from 60 minutes to 15 

minutes, the MAE values decreased at all DNN models. 

That is, the next-step prediction accuracy has been 

improved by increasing the time resolution. Also, it 

should be noted that the amount of error reduction was 

the largest in the LSTM model, implying that the LSTM 

model is relatively sensitive to the input data’s time 

resolution. As the time step becomes smaller, the 

sequential features of the training data become stronger. 

Since the LSTM network is specialized in capturing the 

features from sequential data, the LSTM network likely 

shows good performance at high-time resolution data.  

 
Fig. 4. Comparison of MAE for different DNN structures and 

different time steps 

 

3.2 Comparison of Euclidean distances 

 

As the purpose of developing the surrogate model is to 

accurately predict the progression of a LOCCW accident 

scenario, the regression performance over the whole 

accident scenario should be evaluated. As discussed in 

Section 2.4, the Euclidean distance is estimated for each 

surrogate model to identify which DNN architecture and 

time resolution can enhance the regression performance. 

The mean Euclidean distances of each TH variable, 

which is an average of all 𝐸𝐷𝑖  values in the test data, 

are compared in Fig. 5 for various time resolutions and 

DNN models.  

 

 

 
Fig. 5. Mean Euclidean distances of TH variables of CNN, 

LSTM, and CNN-LSTM models, from top to bottom. 

 

When the time resolution is fixed, the mean Euclidean 

distances are generally small at CNN-LSTM models. 

Such a result is consistent with the MAE values 

discussed in Fig. 4, proving the superiority of the CNN-

LSTM model over the CNN or LSTM model.  

The mean Euclidean distance is not only affected by 

the type of DNN model but also by time resolution. It is 

observed that the mean Euclidean distance increases as 

the size of the time step decreases, implying that the 

regression performance over the scenario deteriorates as 

the time resolution becomes higher. Also, it should be 

noted that the mean Euclidean distances of RV WL and 
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CTMT pressure sharply increase as the time resolution 

becomes higher.  

Such a counter-intuitive result is expected to stem 

from the accumulation of calculation errors. As the time 

resolution increases from 60 to 15 minutes, the number 

of calculations that must be done over a scenario is 

quadrupled. Although the MAE of each surrogate model 

has been decreased by increasing the time resolution, the 

amount of decrement is too small to offset the error 

accumulated by repeated calculations. To underpin this 

explanation, the amount of accumulated absolute error 

between the values predicted by CNN-LSTM models 

and MAAP code is plotted as a function of time. To 

perform this calculation, a specific accident scenario has 

been selected as a test scenario. It is a scenario in which 

the 15-min model produces the least 𝐸𝐷𝑖  values (see 

Table Ⅳ).  

 
Table Ⅳ: Component failure times (1-7) and activation times 

of SAMG strategies (8-10) of the selected accident scenario 

 Component/SAMG Activation time [hr] 

1 RCP seal LOCA 1 

2 HX - 

3 HPI pump 52 

4 LPI pump - 

5 CSS pump - 

6 MDAFW pump 14 

7 CHP 63 

8 M1 - 

9 M2 34 

10 M3 - 

 

Based on this scenario, the accumulated calculation 

error of each TH variable is plotted over 72 hours. It is 

clearly shown in Fig. 6 that the error is stacked as the 

accident progresses, and the speed of accumulation is 

relatively faster at the 15-min model. In contrast, the 

accumulated error tends to increase slowly and smoothly 

over time at the 60-min model. Thus, the hypothesis that 

the repeated calculations have deteriorated the regression 

performance of high-resolution models has been proven. 

 

 

 

 
Fig. 6. Comparison of accumulated errors for various time 

resolutions 

 

4. Conclusions and Further Works 

 

In this study, the effect of time resolution and type of 

DNN model on the performance for predicting the 

progression of LOCCW accident scenarios. Using 

MAAP 5.03 code, LOCCW accident scenarios 

composed of various component failure times and 

mitigation strategies were analyzed. Using the MAAP 

data, surrogate models based on the DNN technique were 

developed. Three different DNN structures were tested 

(CNN, LSTM, CNN-LSTM) with three different time 

resolutions (15, 30, 60 minutes). As a result, CNN-

LSTM architecture had the smallest MAE at all time 

resolutions. When the DNN type is fixed, the MAE 

decreased as the time resolution increases.  

Meanwhile, the regression performance over an 

accident scenario was evaluated using mean Euclidean 

distance. Again, the CNN-LSTM model produced 

relatively small Euclidean distances, proving that it is a 

promising DNN architecture for time series forecasting. 

However, the Euclidean distances tended to increase as 

the time resolution increased. A possible reason behind 

this is that the frequent calculation at high-resolution 

models accelerates the stacking of calculation errors. 

Thus, it is concluded that increasing the time resolution 

of the surrogate model can reduce the accuracy of the 

prediction of an accident scenario.  

However, there are several limitations to this study. 

First, the hyperparameters and the structure of the DNN 

models require further optimization. In this study, all 

hyperparameters and structures were equally applied at 

all time resolutions. However, as the time resolution 

increases, the number of training data increases, thus 
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requiring the size and complexity of the DNN models 

should be also enlarged. As DNN architectures are 

dependent on multiple hyperparameters, the optimization 

process is expected to be tedious.  

Although the average prediction accuracy seemed 

satisfactory, there are several scenarios in which the 

surrogate models could not predict the peaks or trends on 

the RV WL, maximum CET. Such deficiencies in the 

model must be resolved, as the two TH variables are 

important safety parameters related to core integrity. By 

optimizing the DNN architectures and carefully 

analyzing the outlier scenarios, prediction accuracies are 

expected to be further improved in the near future. 

At further studies, the input variables related to the 

containment integrity will be considered. By adding the 

parameters related to the containment (such as the 

concentrations of hydrogen and fission products), the 

model’s prediction accuracy is expected to be enhanced. 

Also, it is anticipated that the range of accident scenario 

that the model can predict will be expanded to a 

containment level. 

As the conclusion of this study is that increasing the 

time resolution can have an adverse effect on the full 

scenario prediction performance, this leaves us a 

question of ‘what is the optimal time resolution?’. Hence, 

a method to search for the optimal time resolution and to 

mitigate the penalties rooting from the stacking of 

calculation errors will be devised at future works. 
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