
Responses to Reviewer’s Comments and a Summary of the Revisions. 

(“Evacuation Time Modeling for Fire Incidents within the Nuclear Power Plants 

Using Self- and Semi-Supervised Learning Algorithms.”) 

(23A-093) 

 

 

We thank you for your thorough evaluation and helpful suggestions and comments. We have 

revised the manuscript and incorporated all your comments into our revised manuscript. These 

revisions are summarized in our point-by-point responses to your itemized comments. All 

changes made in the revised manuscript have been highlighted in blue. We hope that this 

revised version addresses all concerns raised in your review. 

 

1. The paragraph in Sec. 1 should be properly partitioned (one paragraph is too long). 

Response: Section 1 has been partitioned into three short paragraphs for improved readability. 

 

2. Please explain in more detail about the methods used in this paper. 

Response: Thank you for your suggestion. We have included a more detailed explanation of 

the self- and semi-supervised learning methods used for our works in Section 2.2. 

 

Optional. Consider adding a simple illustration to explain the unsupervised learning methods. 

Response: Thank you for your considerate suggestion. We have added an illustration that 

provides an overview of self-and semi-supervised learning in Section 2.2. 

 

3. Please explain why R2 decreases except for the VIME method even though the number of 

the labeled data increases from 1,540 to 3,079. 

Response: Thank you for your careful reading and findings. We have mentioned the reason for 

the decrease in performance despite the increased labeled data from the perspective of model 

complexity, and have also added a potential solution to address this issue in the third paragraph 

of Section 3.2. 

 



4. The reviewer agrees that this approach is effective in conditions where label data are difficult 

to obtain. However, this level of R2 does not seem to provide sufficient accuracy to predict the 

evacuation time in practice. Please briefly describe the limitations of this study or future works 

in the conclusion section. 

Response: We appreciate your recognition of the effectiveness of our approach and value your 

comment. In the Conclusions section of our paper, we have addressed the study's limitations 

and proposed future avenues to address these challenges. 

 

5. Describe as Table I:, Table II: instead of Tables 1 and 2. 

Response: The requested modification has been made. 

 

6. Explain why the input variables in Table I(1) were selected and the appropriateness of 

their values. For example, MCR is a place where operators are located, and ambient 

temperatures of 30, 35, and 40 degrees are unrealistic.  

Response: Thank you for your thoughtful consideration. We have addressed the selection of 

input variables and the appropriateness of their values in the second paragraph of Section 2.1. 
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1. Introduction 

 

In recent years, deep learning techniques have evolved 

to solve various problem situations, and data collection 
through simulation is also developing accordingly. The 

main purpose of this study is to predict evacuation time 

during fire emergencies within nuclear power plants with 

consolidated fire and smoke transport (CFAST) 

simulations. The main control room (MCR) of nuclear 

power plants needs to be managed essentially in 

emergency situations to prevent subordinate damage. 

Our approach leverages the CFAST simulator in 

conjunction with the deep neural networks for prediction. 

However, a challenge arises when integrating the 

simulation outcomes into conventional deep learning 

methods. While it is easy to generate initial fire 
conditions, it is time-consuming and expensive to feed 

these inputs into such physics-based simulators because 

of their computational complexity. Fewer labeled data 

are better for such costly conditions, thus we explore 

self- and semi- supervised methodologies that can 

achieve good prediction performance even under the 

circumstance of a small amount of labeled data, 

frequently encountered in reality.  

In this study, the input variable is a combination of 

eight initial conditions, such as heat release rate or fire 

propagation time in the MCR. The output variable is the 
minimum time required to achieve the first of the three 

critical evacuation criteria. Considering that initial fire 

conditions can be easily created in almost seconds, we 

consider the initial input variables as unlabeled data, 

while the set containing the evacuation time as labeled 

data. The present study shows that the results of semi-

supervised methodologies trained with large unlabeled, 

and few labeled data are better than those trained solely 

with labeled data. 

 

2. Data Preprocessing and Related Works 

 
2.1 Data Collecting and Preprocessing 

 

To build an evacuation time prediction model using deep 

learning, we use the CFAST simulator. We first generate 

various initial fire conditions based on the nuclear power 

plant fire modeling analysis guidelines [1]. Table I shows 
the initial fire conditions that we used. We then simulate 

the CFAST with these fire conditions and collect fire 

simulation results. However, it is noted that 
 

Table I: Initial condition variables and their states. 

 

the CFAST simulator provides the room and fire 

measurements over time, rather than providing 

evacuation time. Consequently, we set three evacuation 

initiation criteria as follows: (1) temperature inside MCR 

exceeds 95℃, (2) heat flux of the fire exceeds 1kW/m2, 

and (3) optical density of the smoke exceeds 3m−1. We 

define the evacuation time as the time point when at least 

one of the three criteria is met. We then transform the fire 

simulation results into evacuation time data. Finally, we 

create a dataset comprising pairs of initial fire conditions 

and corresponding evacuation times to train deep 

learning models. 
The selection of input variables in fire simulations is 

driven by a paramount concern for safety. While the 

ambient temperatures of 30, 35, and 40 degrees might 

Input 
Variables 

Training States Testing States 

Peak HRR 400, 702 702 

Propagation 
Time 

10, 15 10 

Door 
Condition 

Closed, Closed-
open, Open 

Closed, Closed-
open, Open 

Height of 
Fire 

0, 0.45, 0.9 
0, 0.3, 0.45, 0.6, 

0.9 

Ventilation 
Height 

2.2, 2.7, 3.2 2.2, 2.5 

Flow Rate 
1.0, 1.25, 1.5, 1.75, 

2, 2.25, 2.5 
1.0, 1.1 

Leakage Area 
Ratio 

0.03, 0.26, 0.73 0.26 

Ambient 

Temperature 

20, 25, 30, 

35, 40 

20, 22, 25, 
27, 30, 32, 
35, 37, 40 
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seem extreme for an MCR, it is important to clarify that 

these values are intentionally chosen to evaluate the 

evacuation response under worst-case conditions. Our 

aim is to rigorously test the evacuation time model and 

fire protection systems to ensure operator safety in the 

most challenging scenarios. These extreme temperatures 

are not intended to simulate routine conditions but rather 

to challenge the system's ability to ensure operator safety 
during abnormal events. 

 

2.2 Self- and Semi- supervised learning 

 

 

Traditional deep learning models require enough 

labeled data to ensure high performance. Nevertheless, it 

is challenging to acquire a large number of labeled data 

in real-world scenarios. In contrast, the collection of 

unlabeled data is comparatively inexpensive. 

Consequently, many studies seek to leverage large pools 
of unlabeled data to enhance the performance of deep 

learning models. These efforts typically fall within two 

principal categories: (1) self-supervised learning, and (2) 

semi-supervised learning. Figure 1 illustrates the overall 

process of these two methodologies. Self-supervised 

learning focuses on extracting task-agnostic features and 

enhancing generalization capacity during the pre-

training phase using unlabeled data. After that, the neural 

networks undergo fine-tuning for a specific task, using 

the knowledge acquired from the pretext task to enhance 

their performance. The most fundamental cornerstone of 
self-supervised learning lies in autoencoder-based 

approaches. Especially, denoising autoencoder is trained 

to reconstruct the original input from its latent vector by 

using a perturbed version of the original input with 

Gaussian noise.  In the process of compressing noisy data 

to a lower-dimensional representation and subsequently 

reconstructing it, the encoder component of the 

autoencoder learns the underlying patterns and 

relationships between initial condition variables.  

Semi-supervised learning directly combines both 

labeled and unlabeled data during training to enhance 

performance in target tasks, such as regression or 

classification. Specifically, in semi-supervised learning, 

unlabeled data are used to enhance consistency or 
minimize entropy in improving the neural network’s 

robustness. Pseudo-Label [2] improves data efficiency 

by assigning labels with maximum probability from 

unlabeled data. It enhances the neural network’s 

robustness by ensuring that the model predicts the same 

label for both the original and noisy unlabeled samples. 

Mean teacher method [3] facilitates the generation of 

consistent outputs for unlabeled data through the 

exponential moving average update, even in the face of 

diverse perturbations and temporal discrepancies across 

training epochs. It trains the neural networks to minimize 
the mean squared differences for consistency 

regularization between the outputs of the student model 

and the teacher model under stochastic conditions. 

Finally, the student model can learn the various 

information from the unlabeled data, and the predictive 

performance of the model can be further generalized. 

Virtual adversarial training (VAT) [4] enhances the 

robustness of the model by encouraging the model to be 

consistent in the presence of virtual adversarial noise 

applied to unlabeled data. Virtual adversarial noise 

intentionally transforms the samples in the opposite 

direction of what the model should learn, making the 
learning process challenging. By minimizing the error 

between the predictions of the original and noisy samples 

by virtual adversarial noises, the model can maintain 

reasonable predictive performance even in harsh 

conditions. 

 

3. Methods and Experiments 

 

3.1 Methods 

 

The present study aims to use and compare self- and 
semi- supervised learning methods for predicting 

evacuation time in fire hazards with varying input 

conditions. However, these approaches are mainly 

focused on unstructured data such as images. In contrast, 

our study uses structured tabular data. To address this, 

we propose using the value imputation and mask 

estimation (VIME) method [5], which combines the self- 

and semi- supervised learning, specifically designed for 

tabular data. In VIME, neural networks reconstruct 

original features from corrupted data and are trained to 

identify which parts of tabular data are corrupted. These 

self-supervised learning techniques enable the neural 
networks to learn the underlying tabular data 

representations more effectively and improve their 

ability to denoise and extract meaningful information. 

Afterward, they are trained to produce consistent 

predictions across multiple instances of corrupted data 

Fig. 1. A schematic overview of self- and semi-supervised 
learning methods. 
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and predict labels of a small amount of labeled data. In 

these semi-supervised approaches in VIME, the neural 

networks are trained to maintain consistency on 

corrupted data and accurately predict labeled data. 

 

3.2 Experiments 

 

In real-world fire scenarios, deep learning models may 
confront fire scenarios that were not previously included 

in their training dataset. As a consequence, evaluating the 

model's capacity for generalization becomes imperative 

because it indicates its robustness in effectively 

performing with unseen data. To effectively verify the 

model's generalization performance, we ensure that the 

fire scenarios present in the testing dataset differ from 

those encountered during the training phase. This 

deliberate distinction aims to assess the model's ability to 

extrapolate its learned patterns to unforeseen situations, 

thus confirming its reliability under diverse conditions. 
Table I shows the eight input variables and their 

corresponding states for both the training and testing 

datasets of the deep learning models. To simulate real-

world fire scenarios, the testing dataset includes several 

new states that the model did not encounter during the 

training phase. 

To evaluate the performance of the deep learning 

model, we used the 𝑅2  score, indicating the degree to 

which the model’s predictions align with the actual data. 

The 𝑅2  score ranges between one, representing an 

excellent prediction match, and negative infinity, which 

indicates the poorest possible performance. We 

conducted five repeated experiments with different 

random seeds for pairwise comparisons. Table II 

presents the average and standard deviation of 𝑅2 results 

of five repeated experiments for the labeled data at four 

different rates. To examine the performance across 
varying quantities of labeled data, we conducted 

experiments for four cases based on the number of 

training labeled data. These cases correspond to the 

labeled data rates of 10%, 20%, 50%, and 100%, relative 

to the total number of unlabeled data.

    In a scenario with four different labeling rates, we 

compared the performance of six methods. It can be seen 

that the neural network model trained solely on labeled 

data exhibited inferior performance compared to all self- 

and semi- supervised learning techniques, regardless of 

the labeled data ratio. This suggests that the 

incorporation of additional unlabeled data has proven 

effective in alleviating the limitations posed by a scarcity 
of labeled data. Among all self- and semi- supervised 

methodologies, VIME consistently demonstrated good 

predictive performance. This outcome shows the 

specialization of VIME for evacuation time modeling 

within tabular data. When the number of labeled training 

data increased from 1,540 to 3,079, we observed a 

marginal decrease in performance, except for VIME. 

This can be attributed to the current complexity of the 

predictive model, which may not be optimally suited for 

effectively learning from the increased number of 

labeled data points (3,079). Therefore, we believe that 
enhancing the model's performance can be achieved 

through an increase in its capacity and the acquisition of 

more labeled data. In the case of exceptional 

performance with VIME, it suggests that incorporating 

self- and semi-supervised learning techniques enables 

the neural networks to adapt well to the larger labeled 

dataset. 

Figure 2 illustrates the prediction results for 

evacuation time using testing data obtained from the 

neural network and VIME, with each result associated 

with one of the four labeled data ratios. The x-axis 

represents the predicted evacuation time obtained from 
the model, and the y-axis indicates the actual evacuation 

time. Each dot represents a prediction result for an 

individual fire scenario. When the ratio of labeled data is 

as low as 10%, which represents the smallest amount 

used for training, the predictive performance of the 

neural network tends to be poor. In contrast, VIME, 

which benefits from additional training using unlabeled 

data, enhances the predictive performance of the neural 

network. For cases where K is greater than or equal to 

20%, it becomes evident that within the range of actual 

Table II: Average and standard deviation (in parentheses) of 𝑅2 on testing dataset across five runs. The best results are in bold.

Number of  
Training Data 

Method 

Supervised 
Learning 

Self-
supervised 
Learning 

Semi-supervised Learning 
Self + Semi 
supervised 
Learning 

Labeled 

Data 

Unlabeled 

Data 

Neural 

Network 

Denoising 

Autoencoder 
Pseudo-Label 

Mean 

Teacher 
VAT VIME 

308 3,080 
0.03  

(0.32) 
0.36  

(0.10) 
0.35  

(0.16) 
0.38  

(0.19) 
0.23  

(0.20) 
0.49  

(0.27) 

615 3,080 
0.43  

(0.21) 
0.63  

(0.09) 
0.63  

(0.13) 
0.57  

(0.18) 
0.60  

(0.16) 
0.70 

(0.12) 

1,540 3,080 
0.60  

(0.06) 
0.69  

(0.07) 
0.67  

(0.06) 
0.66  

(0.10) 
0.66  

(0.11) 
0.77  

(0.04) 

3,079 3,080 
0.55  

(0.06) 
0.64  

(0.04) 
0.64  

(0.04) 
0.62  

(0.06) 
0.61  

(0.06) 
0.81  

(0.01) 
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evacuation times between 560 and 580, the neural 

network's performance relatively deteriorates, whereas 

VIME's predictive performance remains superior. These 

advantageous attributes of VIME further serve to 

underscore the practicality of using unlabeled data as a 

solution to address the scarcity of labeled data. 

 

 

4. Conclusions 

 

This study demonstrates that evacuation time 

prediction through self- and semi- supervised learning 

can be achieved by using combinations of basic initial 

fire conditions without the need for prediction of 

extensive state sequence using a simulator. The research 

findings are not limited to MCR within nuclear power 

plants and applicable to other high-risk environments 

across various industries. However, the current model's 

accuracy, as indicated by 𝑅2 values, may not yet meet 

the stringent requirements of real-world applications. To 

further enhance the model's precision, our future efforts 
will entail exploring more specialized neural network 

architectures and data augmentation strategies 

specifically designed for tabular data. We envision the 

continued development of this robust evacuation time 

prediction framework through future research endeavors, 

contributing to the enhancement of nuclear safety. 
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