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1. Introduction 

 

Nowadays, the numerical analysis of complex 

structures with huge degrees of freedom utilizing 

numerical method such as finite element analysis became 

practical thanks to the great advances in the computing 

power and resources. However, the analysis models are 

also getting larger and larger to evaluate the detail 

responses of the structures containing the complex 

geometry without any simplifications. 

 Therefore, there remains a demand for an efficient 

method for solving large and complex problems. In this 

study, the approach using model order reduction (MOR) 

technique [1] is introduced to analyze the dynamic 

problem such as modal analysis and response spectrum 

analysis in an efficient way.  

The full model size can be significantly reduced to a 

model with small size through this technique without 

unacceptable loss of accuracy. In addition, the process to 

link the MOR method to the ABAQUS solution routine 

is also suggested in order to use the necessary finite 

element information for model reduction.    

 

2. Model Reduction for Eigenvalue Problems 

 

Model order reduction enables us to obtain an accurate 

low-dimensional representation of high-dimensional 

finite element models.  

The general eigenvalue problem having large degrees 

of freedom (N) can be described as follows; 
 

{K-λM}x(t)=0            (1) 
 
 

If we apply a suitable transformation matrix T such 

as, 

q(t)=Tx(t)               (2) 

where x(t)∈RN,  T∈RN×n, q(t)∈Rn   
 

 

 Then the full model can be transformed to the 

reduced system with small number of degrees of freedom 

(n) as follows;  
 

{Kr-λMr}q(t)=0           (3) 

where Kr=TTKT,  Mr=TTMT 
 

After all, the key of the reduction of the full model is 

how effective the transformation matrix is constructed. 

That is, very efficient eigenvalue analysis is possible by 

obtaining a transformation matrix consisting of base 

vectors in the Krylov subspace through the moment 

matching method [2].  

The general dynamic system neglecting the damping 

term can be described as follows; 
 

Mẍ(t)+Kx(t)=fu(t)           (4) 
 

After the Laplace transformation of Eqn. (4), the 

transformation function can be written as, 
 

s2MX(s)+KX(s)=FU(s), 

(s2M+K)X(s)=FU(s), 

H(s)=
X(s)

Y(s)
=

F

(s2M+K)
=(s2K-1M+I)-1K-1F (5) 

 

If we apply the Taylor series expansion to the 

transformation function (H(s)) with respect to s = 0 , 

then the following equation can be obtained. 
 

H(s)|s=0=[I-s2K-1M+s4(K-1M)2-s6(K-1M)3+⋯]K-1F 

= ∑ (-1)i(K-1M)iK-1Fs2i∞
i=0         (6) 

 

The coefficient (-1)i(K-1M)iK-1F  is defined as the 

moment of the transformation function H(s).  
 

   mi=(-1)i(K-1M)iK-1F            (7) 
 

This can be thought of an index that represents the 

similarity between the full system and reduced system. 
 

H(s)= m0+m1(s-s0)+⋯+mn(s-s0)n 

 : full system    (8-1) 
 

Ĥ(s)= m̂0+m̂1(s-s0)+⋯+m̂n(s-s0)n 

 : reduced system   (8-2) 
 

If we can construct the system that satisfies the 

following relation up to the desired nth order, then the 

dynamic characteristics of the reduced system become to 

be matched with that of the full system [3].  
 

mi=m̂i, i=1,2,⋯,n            (9) 
 

The moments of the full system and the reduced system 

can be matched if the transformation function is 

constructed with the basis vectors of Krylov subspace. 

The nth order Krylov subspace can be defined as follows; 
 

Krn(A,b)=span(b,Ab,A2b,⋯,An-1b)    (10) 

              A∈Rn×n, b∈Rn:starting vector 
 

Here, if A=K-1M, b=K-1F, then the nth order Krylov 

subspace can be written as, 
 

Krn(K-1M,K-1F)=span(K-1F,K-1MK-1F,⋯,(K-1M)n-1K-1F)  

(11) 
 

When all linear combinations of each column vector of 

the transformation matrix construct the nth Krylov 
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subspace in Eqn. (11), the moments of the full system 

and the reduced system become identical up to nth order. 

However, the basis vectors shown in the Krylov 

subspace in Eqn. (11) can cause some numerical errors 

in practical applications because they may not meet the 

requirement that all the basis vectors should be linearly 

independent. Therefore, the new basis vectors need to be 

generated through the Anoldi process [4] in order to 

satisfy the linearly independent requirement while 

maintaining the same Krylov subspace as before.    

 

3. Model Reduction for Response Spectrum Analysis  

 

The response spectrum analysis (RSA) is used to obtain 

the maximum response of the dynamic behavior of the 

structural system. The seismic design against the 

earthquake often requires the maximum displacements or 

forces due to earthquake loading, so the response 

spectrum analysis is frequently used dynamic analysis 

method in the seismic design. 

The basic procedure of response spectrum analysis is as 

follows.  

First, the multi-degree of freedom system shown in Eqn. 

(12) is divided into the independent equation of motion 

of single degree of freedom by utilizing the orthonormal 

properties of each mode.  
 

Mẍ(t)+Cẋ(t)+Kx(t)=-Mrẍg(t)     (12) 
 

where M = mass matrix; C=damping matrix, 

K=stiffness matrix, and r = influence coefficient vector  

Secondly, the natural frequencies ( 𝜔𝑖 ) and natural 

modes (∅𝑖 ) is determined by the modal analysis. And 

then the peak response in the nth mode is estimated by the 

following steps; 

A. The deformation (𝐷𝑖) and pseudo-acceleration (𝐴𝑖)  

corresponding to a specific natural frequency (𝜔𝑖)  

and damping ratio ( ζ𝑖 ) are obtained from the 

earthquake response spectrum. 

B. The displacements of ith mode are computed as 

follows; 

ui=ΓiΦiDi               (13) 

where 

  Γi=
Φi

TMr

Φi
TMΦi

 : mode participation factor  (14) 
 

C. The maximum response can be usually determined 

through SRSS (Square Root of Sum of Squares) 

rule because the maximum response of each mode 

rarely occurs simultaneously.  

 

In order to apply the MOR method, the transformation 

matrix is first derived from the Krylov subspace as 

described in previous section. Then we can get natural 

frequencies (𝜔𝑖) and mode shape vectors (Φi) from the 

reduced system in an efficient way. The displacement of 

each mode can be obtained from Eqn. (13) based on the 

eigen mode calculated by the reduced system. 

 

4. Integration of ABAQUS and MOR method and 

Numerical Examples  

 

The integration of commercial finite element codes and 

MOR method is required for the application to the 

practical complex problems. The commercial software 

such as ABAQUS has already equipped various type of 

elements so we can construct complex model by utilizing 

the proper elements that the software provides.  

Basically, the mass and stiffness matrix information 

need to be transferred to the MOR module from 

ABAQUS solution routine. This can be implemented 

some keywords that the ABAQUS supports and 

dedicated code developed by MATLAB.   

  A simple building model constructed with beam 

element is considered to verify the accuracy and 

efficiency of the proposed methodology as depicted in 

Fig. 1. The relevant finite 

element model has been 

prepared to have 1116 nodes 

and 1430 elements with 2-node 

linear beam element.   

The steel material properties (E 

= 200000MPa, Poisson’s ratio = 

0.3, density=7.8 e-9 ton/mm3 ) 

are applied for the beam 

elements of the building and the 

height of the building is 30 m 

and its width is 15 m. 

The modal analysis results are 

summarized in the Table 1 where 

the N means the order of the 

reduced system and M1~M10 stand for each mode 

number. The results of the reduced systems having 

different order were compared with those of the full 

system computed by ABAQUS. The mode shapes up to 

mode number 4 are shown in Figure 2. 

 
Table 1 Modal Analysis Results (unit: Hz) 
 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Abaqus 1.787 1.852 2.124 5.469 5.649 6.454 9.519 9.776 11.011 11.900 

N=10 1.787 1.852 2.124 5.469 5.649 9.591 10.269 15.612 18.435 38.230 

N=20 1.787 1.852 2.124 5.469 5.649 6.454 9.519 9.776 11.015 12.889 

N=30 1.787 1.852 2.124 5.469 5.649 6.454 9.519 9.776 11.010 11.899 

 

    

Mode 1 Mode 2 Mode 3 Mode 4 

Figure 2 Mode Shapes 

 

The total degree of freedom (TDOF) of this building 

model is 1116 but the natural frequencies calculated with 

the reduced system having only 10 order (degrees of 

freedom) is identical up to fifth mode (M5) and the 

Figure 1 Steel Beam 

Structure 
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accuracy is getting improved as the order of reduced 

system increases as shown in Table 1.   

For the response spectrum analysis, the response 

spectrums shown in Figure 3 were used as an example. 

 

 
Figure 3 Response Spectrum with Different Damping Ratio  

  

 
Figure 4 RSA Result (disp.) 

 

Table 2 Comparison of RSA Results 

 

 The maximum displacement of the top story of the 

building was compared between the reduced model and 

full model from response spectrum analysis based on the 

response spectrum in Figure 3. There is only about 2.5% 

maximum discrepancy between two of them within the 

considered typical damping range from 2% to 10% 

regardless of the damping ratio even though the reduced 

model has much smaller degrees of freedom. 

 

5. Conclusions 

 

The numerical accuracy and efficiency of the reduced 

model utilizing Krylov subspace based-model order 

reduction method was validated through its application 

to the eigenvalue problem and response spectrum 

analysis of a simple building structure.  

 It was confirmed that the proposed method could 

provide accurate results compared to the those of the full 

system in spite of a significantly reduced degree of 

freedom. 

The advantages of this approach would be greater as the 

size of the model increases. 
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 Full 

Model 

Reduced 

Model 
Relative 

Error  
DOF 1116 30 

Disp. 

(mm) 

2% damping 157.1 161.1 2.48% 

3% damping 127.5 129.3 1.39% 

5% damping 100.9 101.3 0.39% 

7% damping 86.99 86.61 0.44% 

10% damping 77.55 76.32 1.61% 


