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1. Introduction 

 
Loose Part Monitoring System (LPMS), which is a 

component of the NSSS Integrity Monitoring System 
(NIMS), is employed to monitor impact signals and 
analyze the location and mass of metal loose parts within 
the primary systems of nuclear power plants. 
Localization algorithms are based on the time difference 
of arrival at three acceleration sensors [1]. To enhance 
localization accuracy, precise estimation of the time 
differences in arrival for impact signals from metal loose 
parts between accelerometers is necessary. And the wave 
propagation speed of structure from impact signals is 
also important. In cases where a metal loose part impact 
event alarm occurs in the loose part monitoring system 
of the primary system in nuclear power plants, rapid 
signal analysis and timely reporting to the regulator are 
of very importance. Experts in the relevant field conduct 
data analysis to assess the impact signals. Recently, 
research has been conducted in the field of nuclear power 
plant structural integrity using fault simulation testbeds 
and finite element models to apply artificial intelligence 
technology [2], [3]. 

However, simulating high-temperature and high-
pressure environments is difficult, and simulating 
various fault conditions for the application of deep 
learning models is also challenging. As a result, 
acquiring sufficient training data is extremely difficult. 
For the simulation of metal loose part impact data, an 
impact testbed with three accelerometers is being used to 
produce impact data. However, performing tests 
thousands or tens of thousands of times by humans for 
generating artificial intelligence training data is highly 
inefficient and prone to human errors. Therefore, in this 
paper, to augment the data for training artificial 
intelligence models, an array of accelerometers at 
measurement points on a square testbed and 
accelerometer pairing between points have been used to 
generate hundreds of thousands of data in a short period 
of time. To evaluate the learning performance of the 
artificial intelligence model as the number of data points 
increased, To evaluate the learning performance of the 
artificial intelligence model as the number of data points 
increased. 
 
 
 

2. Methods and Results 
 

In this section, we presented the conventional 
experimental method, the experimental method using the 
accelerometer array, the augmentation method through 
data pairing, and the errors of the artificial intelligence 
model based on data augmentation. 

 
2.1 Metal sphere impact test setup in a rectangular plate 
 

 
Fig. 1. Test setup for metal sphere impact  

 
The test setup for the rectangular plate metal sphere 

impact test is shown in Fig.1. Three accelerometers were 
positioned in a triangular arrangement at the locations 
indicated by blue circles. The yellow circle in Figure 1 
represents the impact test location for the metal sphere, 
and a flexible wire was used to connect a 12g metal 
sphere for the impact test. The grid spacing is 50mm, and 
the size of the plate is 2m x 2m. Impact tests were 
conducted 40 times at each point with a flexible wire 
length of 300mm and an elevation angle of 40 degrees. 
For data augmentation, a total of 27 accelerometers were 
mounted in the designated regions of red squares shown 
in Fig.1. Each of these regions contained a 3x3 grid of 
uniaxial accelerometers positioned at the vertex area of 
the triangle. The measurement system and accelerometer 
data acquisition were performed using NI PXIe and NI 
LABVIEW, and the data sampling rate, acquisition time, 
and pre-trigger conditions are shown in Table 1 below. 

 
Table I: Signal acquisition condition 

Sampling frequency 200kHz 

Measuring time 100ms 

Pre-trigger time 15ms 
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2.2 Acceleration signal pairing and data augmentation 

 
For the localization of the impact of the metal sphere, 

a minimum of 3 accelerometer signals are required. In 
this case, one signal from each accelerometer array 
position is necessary. Considering the scale of the 
localization in operating nuclear power plants, an 
estimation accuracy of a few centimeters was considered. 
As shown in Figure 1, by utilizing combinations of 
accelerometer arrays with 9 sensors each at mounting 
positions 1, 2, and 3, a total of 729 datasets were obtained 
from a single impact test. Using this approach, a total of 
262,440 datasets were acquired 15 positions. 
 
2.3 Train and validation of applied AI model 

 
To compare the performance of the artificial 

intelligence model based on data augmentation, we 
utilized a classification model using ResNet18[3]. A total 
of 7 impact data points were classified into respective 
classes. The quantities of data for the baseline testing 
method (test-α) and the data augmentation method using 
the accelerometer array (test-β) are presented in Table 2. 
The results of train loss and validation loss for test-α and 
test-β are shown in Figure 2. The train loss for test-α and 
test-β at the last epoch were 0.122 and 0.178, 
respectively. The train error of test-β exhibited 0.056 
lower than that of test-α. In test-α, as the epochs 
progressed, the loss fluctuation tended to increase and 
remain around 0.3. The validation loss for test-α and test-
β at the last epoch were 0.012 and 0.003, respectively. 
The validation loss of test-β exhibited 0.011 lower than 
that of test-α and slight loss fluctuations were observed 
in test-α. Based on the test results, when applying the 
accelerometer array for testing and utilizing augmented 
data in the training of the artificial intelligence model, 
lower errors were observed in terms of both train loss and 
validation loss. Additionally, the model converged 
smoothly. 

 
Table II: Applied data for train and validation of a 

classification model 

Applied 
locations 
(classes) 

Train dataset Validation dataset 

Test-a Test-b Test-a Test-b 

7 168 122,472 56 40,824 

 

 
Fig. 2. Train and validation losses of a classification model 
(baseline data model : left, augmented data model : right) 

3. Conclusions 
 

By utilizing augmented artificial intelligence training 
data generated through the use of the accelerometer array, 
the errors of the AI classification model were compared. 
It was observed that the model utilizing augmented data 
outperformed from the perspectives of training and 
validation errors as well as convergence. It is anticipated 
that applying this data augmentation method will make it 
possible to generate ample data for the development and 
enhancement of fault diagnosis artificial intelligence 
models. 
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