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1. Introduction 

 
In the ever-evolving landscape of nuclear technology, 

the paramount objective remains the assurance of safety 

and reliability within nuclear power plants. To achieve 

these aims, incidents within these plants are categorized 

into design basis accidents and severe accidents, each 

addressed by distinct protocols: Emergency Operating 

Procedures (EOP) and Severe Accident Management 

Guidelines (SAMG). 

 

While the EOP is applicable when the core is largely 

intact and the situation is controllable, the SMAG is 

applicable when the core overheats, core/fuel damage 

occurs, a large release of fission products from the fuel 

occurs, or fission product boundary generation is 

threatened or failed [1]. Additionally, the SAMG is 

intended to address Beyond-Design-Basis Accidents 

(BDA) where the core is severely damaged or has the 

potential to be damaged. The goals of SAMG are to 

stabilize the damaged core, maintain containment, and 

minimize fission product release from the core [2]. 

 

Especially for severe accidents, where the impact and 

damage are greater, various safety measures and 

technologies are needed. A major characteristic of severe 

accidents is that it is difficult to find a connection 

between phenomena and causes [3], and the direction of 

the accident varies greatly depending on the presence or 

absence of certain events [4].  

 

Among the events that can occur during the progression 

of a severe accident, the failure of the reactor pressure 

vessel (RPV) is of high importance since it is the failure 

of a key safety barrier that prevents the release of 

radioactive material to the environment. With RPV 

vessel failure, the purpose of the accident mitigation 

strategy shifts from protecting the reactor cooling system 

to protecting the containment. Therefore, predicting the 

time of RPV vessel failure based on information 

available in the accident condition can make a significant 

contribution to the safety of nuclear power plants. 

  

In this study, a preliminary study was conducted to 

predict RPV failure time using artificial neural networks. 

A study was conducted to predict the remaining time 

until RPV failure occurs using the MAAP simulation 

data of Total Loss of Component Cooling Water 

(TLOCCW). The prediction performance of RPV failure 

time is evaluated for three neural networks and they are 

compared to each other: Convolution Neural Network 

(CNN), Long Short-Term Memory (LSTM), and CNN-

LSTM. 

  

2. Methods 

 

  This study serves as a preliminary study aimed at 

assessing the viability of utilizing an artificial neural 

network to predict the time of Reactor Pressure Vessel 

(RPV) failure. The assessment of the artificial neural 

network's performance is conducted using a relatively 

straightforward dataset. Within the context of the 

TLOCCW accident scenario, the evaluation is focused 

solely on the failures of two specific components: the 

RCP (Reactor Coolant Pump) seal LOCA and the High-

Pressure Injection (HPI) pump. To emulate the RPV 

failure, all SAMG mitigations are deliberately disabled. 

 

Given that the RPV failure predominantly transpires 

between 57 and 67 hours for most scenarios, the 

simulation time is set to 72 hours. By restricting the 

occurrence of RCP seal LOCA within the initial 30 

minutes, one hour, and an hour and a half of the event, 

following lognormal distribution from initiation event [5] 

while limiting the timeframe for HPI failure to 0 to 71.5 

hours in intervals of 30 minutes, a comprehensive dataset 

of 432 accident scenarios is generated. 

Table 1 Input Parameter for RPV failure Time Prediction 

Input Parameters for ANN 

Primary Pressure*  

Ex-vessel Pressure 

Pressurizer Pressure 

Steam generator Pressure 

Hot leg Temperature 

Cod leg Temperature 

* Primary Pressure is an average pressure of the reactor upper plenum and 

the reactor dome in MAAP code 

 

 From the generated dataset with MAAP, a total of six 

parameters were chosen, and these are summarized in 

Table 1. These parameters encompass four pressure 

variables within the nuclear power plant and the 
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temperatures associated with both the hot and the cold 

legs. 

 

Considering the pivotal role of pressure increments 

within the reactor pressure vessel (RPV) rupture process, 

pertinent data encompassing the pressure metrics on the 

primary side, as well as the temperatures of the hot and 

the cold legs, were used as inputs for the artificial neural 

network. The inputs are expected to encapsulate a 

comprehensive overview of the accident's underlying 

dynamics. 

 

The training dataset was derived from the MAAP 

dataset with the time interval of 30 minutes. Although 

the MAAP platform has the capability to generate data 

with elevated temporal granularity, the foresight led us 

to consider that the reduced temporal span between 

successive data instances could potentially impede the 

neural network's efficacy. This anticipation stems from 

the rationale that a more compact timeframe might yield 

a diminished magnitude of variation in the output data 

(RPV failure time) relative to a comparable array of input 

parameters. 

 

 

 

Figure 1 Concept of RPV Failure Prediction Model 

Utilizing an artificial neural network for the prediction 

of RPV failure entails the incorporation of input 

parameters spanning three discrete time steps, each 

corresponding to a duration of 30 minutes per step, aimed 

at forecasting the time remaining until the imminent RPV 

failure. This framework is illustrated in Figure 1. To 

address this inquiry, the authors engaged in an 

investigation employing three distinct neural network 

architectures: CNN, LSTM, and the hybrid CNN-LSTM 

model. Each architecture was endowed with two 

concealed layers. 

 

The complete dataset underwent a stochastic 

partitioning into approximate proportions of 8:1:1, 

designating them respectively as the training set, test set, 

and validation set. The training set is the reservoir of data 

employed for the direct training of the neural network. 

Within this study, the loss criterion utilized during the 

training process is the mean squared error metric. 

Conversely, the test set and validation set are held 

independent of the training process. The test set serves as 

the yardstick for evaluating the ultimate performance of 

the well-trained neural network. 

 

The validation set, on the other hand, serves as a 

safeguard against overfitting during the network's 

training. Throughout the training process, the neural 

network scrutinizes the loss value concerning the 

validation set after each epoch, ceasing its training 

trajectory when the validation loss attains its minimal 

value and remains unaltered despite 100 subsequent 

epochs of training.  

 

3. Results & Discussions 

 

 Table 2 presents the root mean square error (RMSE) 

corresponding to the predictive outcomes of the model 

for each dataset. Notably, the hybrid CNN-LSTM model 

demonstrates the best precision, as evident from the error 

assessment on the test set. This observation indicates that 

the successful and comprehensive model, which can be 

indicated by the relatively minimal disparity in RMSE 

values between the training and test sets. Figure 2 shows 

the distribution of the difference between the predicted 

value of each model and the actual MAAP data in the test 

set. It can be seen that lower standard deviation is shown 

according to the order of RMSE values for the test set in 

Table 2. 

Table 2 Root Mean Squared Error of Each model 

 CNN LSTM CNN-LSTM 

Training 

Set 

1.13.E-02 1.02.E-02 9.10.E-03 

Validation 

Set 

1.11.E-02 1.08.E-02 9.10.E-03 

Test Set 1.04.E-02 1.11.E-02 8.80.E-03 

 

 

Figure 2 Distribution of Predicted Value of Test set 
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Figure 3 Training Loss of CNN model 

 

Figure 4 Training Loss of LSTM model 

 

Figure 5 Training Loss of CNN-LSTM model 

Figures 3, 4, and 5 illustrate the trajectory of loss 

values during the training phase for the CNN, LSTM, and 

hybrid CNN-LSTM composite models, respectively. In 

each case, a prominent pattern emerges whereby the loss 

consistently diminishes as the number of training epochs 

increases. It is of significance to note that the learning 

process adheres to the methodology delineated in the 

Methods section, wherein a decisive criterion for 

concluding the learning process is the observation that 

the minimum loss within the validation set remains 

unaltered for a continuous span of 100 consecutive 

epochs. 

 

 Figure 6 illustrates the cumulative root mean square 

error (RMSE) computed over the course of the accident 

while evaluating the RMSE associated with the test set. 

It is evident that predicting the time of Reactor Pressure 

Vessel (RPV) failure by leveraging information from the 

initial stages of the accident yields superior accuracy 

compared to utilizing information from later stages of the 

same accident. 

 

This observation is expected due to the characteristics 

of the given dataset. A substantial portion of the data 

during the early phase of the accident exhibits a 

consistent pattern before the occurrences of RCP seal 

LOCA and HPI failure have not taken place. As the 

accident progresses and the events of RCP seal LOCA 

and HPI failure occur, better correlation between input 

data and output data emerges. This contributes to the 

enhancement of the model's predictability. 

 

 

 

Figure 6 Cumulative RMSE vs. Accident Time 

 

4. Summary & Further Works 

 

   In summary, this preliminary investigation, utilizing 

data derived from the selected accident scenarios within 

the TLOCCW context, demonstrates successful RPV 

failure time prediction with a commendable level of 

accuracy. Among the evaluated CNN, LSTM, and CNN-

LSTM hybrid models, the CNN-LSTM hybrid model 

exhibited the most favorable performance. 

 

Nevertheless, these models solely drew upon partial 

data originating from a relatively uncomplicated 

TLOCCW accident scenario. Consequently, a 

compelling necessity exists to extend the applicability of 

these models. Efficacy within scenarios encompassing 

not only RCP seal LOCA and HPI failure, but also 

additional pivotal components such as LPI, HX, CSS, 

and MDAFW pump malfunctions have to be monitored. 

 

Importantly, these models were exclusively trained 

using data from accidents wherein RPV failure time was 

predetermined. It is imperative that subsequent research 

delves into the models' capacity to identify and 
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generalize when training data does not contain RPV 

failures. 
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