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1. Introduction 

 
Explainable artificial intelligence (XAI) is introduced 

to resolve the black-box characteristics of artificial 

intelligence (AI), and to mitigate trade-off between 

learning performance and explainability of machine 

learning including deep learning [1]. The need that 

explainability of XAI should attain a level that end-

users can understand or more than a higher level as well 

as that end-users can interpret AI [2] is recently 

suggested. Therefore, the studies that explanation from 

XAI can be user- or human-centered was carried out 

[3,4]. Here, the meaning of the term ‘user/human- 

centered’ is similar to comprehensible or 

informativeness for end-users (e.g., operator, regulator, 

or stakeholders). 

In a nuclear power plant (NPP) field, XAI is applied 

to an operator decision-making support technology 

based on AI, especially, machine learning including 

deep learning, in order to enhance its usability and 

reliability. However, it seems to be focused on 

interpretability of an AI model rather than explainability 

for operator as an end-user until now. Hence, the study 

for explanation from the viewpoint of an operator using 

XAI is necessary. 

This study is performed to develop an XAI-based 

deep learning method providing explanation easily 

comprehensible to an operator for usability of AI-based 

operator decision-making support technologies. In the 

study, operator-centered explanation is defined and 

adopted. In addition, the model for NPP abnormal state 

diagnosis and procedure-based rationale is developed 

using XAI-based deep learning method. Its result is 

compared with that of a model in a conventional way. 

 

2. Operator-centered explanation 

 

Operator-centered explanation refers to not only 

interpretable information (i.e., rationale for decision-

making of AI) but also comprehensible information (i.e., 

compatible to mental model) to an operator in an NPP. 

Further, operator-centered explanation is intended to be 

toward effectiveness evaluation dimensions related to 

end-users (e.g., comprehensibility, user satisfaction, and 

so on [5]) in aspect of XAI field. 

In the study, a procedure-based variable is selected as 

operator-centered explanation for usability of an AI-

based operator decision-making support technology. 

Operators in an NPP normally perform rule-based tasks 

checking variables described in an operating procedure. 

Hence, procedure-based rationale of decision-making 

support information from XAI is able to be 

comprehensible as well as interpretable in aspect of 

operators’ tasks. 

 

3. Methodology 

 

3.1 CNN with Grad-CAM 

 

Convolutional neural network (CNN) based on 

gradient-weighted class activation mapping (Grad-

CAM) [6] is used to provide high diagnosis accuracy 

and operator-centered explanation to an operator. 

In the NPP field, it is essential that the performance 

of AI technologies for operator decision-making support 

(e.g., anomaly detection, state diagnosis or 

prediction/forecasting) is similar to or better than a 

human-level. Therefore, deep learning is usually used 

on account of its higher learning performance despite of 

its lower explainability. Dilated causal convolutional 

neural network (DCCNN) [7] is used to diagnose 

abnormal states in an NPP in the study. Dilated 

convolution is applied to more extract features from 

inputs using receptive filter while keeping its filter size. 

Causal convolution makes convolution layers suitable 

for time-series analysis.  

Rationale for a result of abnormal state diagnosis 

from DCCNN is visualized using Grad-CAM. Grad-

CAM calculates the weights (i.e., importance for 

prediction) using gradient from the last layer of 

DCCNN, and then importance is emphasized using the 

color according to its scale. 

 

3.2 Ensemble Learning 

 

Performance of deep learning is generally higher 

when more inputs useful to learning are applied. 

However, high performance cannot be ensured when 

procedure-based variables are applied as inputs for only 

explainability. In contrast, explainability of procedure-
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based explanation is expected to decrease in the event 

that all the useful variables are applied to deep learning 

for performance. Hence, stacking of ensemble learning 

is used to achieve both high accuracy and 

comprehensible explainability. 

Ensemble learning is the method that outputs from 

multiple weak learner are combined to make a strong 

learner of which performance is better than an 

individual weak learner. Stacking is a way of ensemble 

learning making a meta model learned using outputs 

from sub models to produce the final output. 

 

3.3 Application Data 

 

The data of NPP abnormal states is acquired by 

simulating abnormal state scenarios using compact 

nuclear simulator (CNS) developed by Korea Atomic 

Energy Research Institute. Twelve scenarios of NPP 

abnormal states are constructed based on abnormal 

operating procedures (AOPs). 

382 simulated data are used to develop a Grad-CAM-

based CNN model, and separated into training, 

verification, and test datasets for cross-validation. 41 

variables of the simulated data are used as input features 

for developing a model. All the input features for a 

model are procedure-based variables which are 

available in CNS among variables described in twelve 

AOPs. Input features are also used as procedure-based 

rationale by XAI. The simulated data consist of a 

normal state followed by an abnormal state. 

 

4. Results 

 

4.1 Developed Model 

 

The developed model consists of twelve sub models 

and one meta model. Each sub model is trained using 

the simulated data with input features corresponding to 

each AOP. Sub models diagnose thirteen abnormal 

states (i.e., one normal state and twelve abnormal states). 

Meta model is trained using outputs from sub models. 

Meta model diagnose thirteen NPP states, which 

become the final result. 

According to the result of abnormal state diagnosis 

from a meta model, Grad-CAM is applied to the last 

convolution layer of the corresponding sub model to 

provide rationale calculating the importance of input 

features, and then to visualize that. All sub models have 

the same DCCNN structure. 

 

4.2 Performance of Abnormal State Diagnosis 

 

The developed model has shown accuracy of 0.944 

for abnormal state diagnosis when applying the test 

dataset. The confusion matrix of abnormal state 

diagnosis is shown in Fig. 1. 

 

 

4.3 Visualization of Procedure-based Rationale 

 

Visualization of procedure-based rationale by Grad-

CAM is presented in Fig. 2 for diagnosis result of one 

ab60-02 case. That is, the importance of each variable 

applied to the corresponding sub model over time is 

expressed. Here, each variable applied to the 

corresponding sub model is stated in the abnormal-60-

02 procedure. 

The color on each procedure-based variable differs 

depending on the importance scale. If the importance 

scale gets lower, the color become brighter.  
 

 
 

Fig. 1. Confusion matrix for abnormal state diagnosis of 

developed model 
 

 
Fig. 2. Visualization explanation of developed model (in case 

of ab60-02). 
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4.4 Comparison with Conventional Model 

 

The accuracy and explanation of the developed model 

are compared with those of a conventional model. The 

conventional model refers to a model where multiple 

variables are applied at once. In the study, the 

conventional model is established applying the same 

simulated data with 41 procedure variables to the 

network structure which is the same as sub models of 

the developed model. 
 

 
 

Fig. 3. Confusion matrix for abnormal state diagnosis of 

conventional model. 
 

 
Fig. 4. Visualization explanation of conventional model (in 

case of ab60-02). 
 

Accuracy of 0.942 is shown from the conventional 

model. The confusion matrix of abnormal state 

diagnosis using the conventional model is shown in Fig. 

3. Fig. 4 shows visualized explanation of the 

conventional model using Grad-CAM for diagnosis 

result of one ab60-02 case. In Fig. 4, the importance of 

all variables applied to the conventional model over 

time is expressed. However, the highlighted variables 

‘WHV22’ and ‘WFWLN1’ are not indicated in the 

abnormal-60-02 procedure. 

The accuracy of both models is nearly equivalent. 

However, procedure-based rationale of the developed 

model seems to be more useful than the conventional 

model since the importance of input features applied is 

presented within a range of an AOP. That is, it is more 

compatible to an operator’s task. 

 

5. Conclusions 

 

The model providing explanation comprehensible 

from the viewpoint of an operator is developed using 

XAI-based deep learning method. The accuracy and 

explainability of the developed model are compared 

with those of a conventional model. Consequently, the 

developed model is able to provide operator-centered 

explanation which is relatively more comprehensible to 

operator than the conventional model without any 

accuracy loss in NPP abnormal states. 
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