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1. Introduction 

 
Since the Fukushima Nuclear Power Plants (NPPs) 

accident, safety have been emphasized in NPPs. NPPs, 

designed considering design basis accidents, are 

operated stably to avoid exceeding them. If the design 

basis accident is exceeded and the reactor core is 

damaged, it is considered a severe accident. The Core 

Exit Temperature (CET) is a typical severe accident 

starting condition, and it is an important factor in 

presenting the starting condition temperature [1]. If the 

CET reaches 922K, the corresponding time is regarded 

as the entry time of the severe accident. As a result, the 

core cooling function may be lost, core exposure may 

occur. A severe accident is an accident with a large 

scale of damage, so it is necessary to prepare for such 

accident and take quick actions. However, because of 

the high complexity of various systems, there is a 

possibility that operators may become confused due to 

many variables. Therefore, operation support system for 

reducing human error, such as golden time prediction, is 

being researched [2]. 

In this study, prediction of the severe accident entry 

time was performed in the loss of coolant accident 

(LOCA) situations. Specifically, the entry time of a 

severe accident was predicted through CET prediction 

using artificial intelligence (AI). Through this, operators 

can recognize the entry time into a severe accident in an 

emergency situation, and can quickly mitigate the 

accident based on preemptive action. It can also 

determine optimal operating conditions and control 

strategies, and increase the efficiency of NPPs. 

Recently, research using AI is being actively 

conducted to prevent accidents and support operators. 

However, existing AI models have a trade-off 

relationship between explainability and accuracy, and 

the use of black-box models in existing studies limits 

their application due to limitations in explainability [1].  

Therefore, the Explainable Boosting Machine (EBM), 

which has the potential for explanations, is applied to 

predict the CET in this study. EBM is a machine 

learning model that adds explainability to the existing 

boosting machine method [3]. Also, EBM is a 

generalized additive model, and as a white-box model, 

it presents reasons that can be explained to users and 

provides high interpretability accordingly. In this study, 

Modular Accident Analysis Program (MAAP) code was 

used to obtain data for AI learning. The MAAP code is 

a program that can simulate a virtual severe accident of 

NPPs, and the user can obtain data about the desired 

situation [2]. The LOCA scenarios were selected and 

simulated.  

 

2. Method 

 

This section describes the EBM model employed for 

predicting the entry time of the severe accident. The 

EBM represents one of the machine learning algorithms 

designed to enhance predictive model performance 

while also ensuring result interpretability. EBM is a 

tree-based gradient-boosting model. In each tree of the 

ensemble, individual features are learned sequentially 

through a round-robin approach, without prioritizing 

any feature [4]. Throughout this process, a small 

learning rate is employed to mitigate overfitting. The 

equation for the EBM model, which represents an 

advancement over the generalized additive model, can 

be expressed as Eq. (1). 

 

0( [ ]) ( )j jg E y f x= +  (1) 

 

where g is the link function, which adapts the model to 

various settings. 
jf is the feature function, and one 

feature function is assigned to each feature and receives 

the value of the corresponding feature
jx  as input. 

Through this, the predicted value, ( [ ])g E y , is obtained. 

In this process, since the values for each feature are 

added all, it becomes easier to understand the influence 

of each feature. Furthermore, the non-linear relationship 

between the predicted value and the features can be 

easily discerned, contributing to the model’s excellent 

performance. However, there are limitations in 

expressing the interactions between features in the form 

of Eq. (1). To overcome this constraint, a pairwise 

interaction term is introduced to Eq. (1). The equation 

with the pairwise interaction term added can be 

expressed as Eq. (2). 
 

0 ,( [ ]) ( ) ( , )j j i j i jg E y f x f x x= + +  (2) 

 

In Eq. (2), the model can include the interaction 

between each feature. However, there is a problem in 

that the number of pairwise interactions included 

increases greatly as the number of features increases. 



Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 

 
Therefore, EBM uses the FAST algorithm to prevent 

the size of the model from increasing due to the rapid 

increase in the number of pairwise interactions. The 

FAST algorithm is designed to incorporate only a few 

important upper level pairwise from among all possible 

feature pairs in the model. For each combination 

( , )i jx x , a few of the most important feature pairs are 

chosen by introducing a new model used to evaluate 

them in the modeling process [5]. Through this 

algorithm, the learning of the final model is completed 

by focusing on combinations of ( , )i jx x  with strong 

interactions. 

 

3. Data 

 

Before applying the prediction algorithm, data were 

acquired through the MAAP code. In this study, 

simulation was conducted by adjusting the break size at 

a constant ratio within the range of small LOCA, and 

data were collected until 10 seconds after the CET 

reached 922K (approximately 649℃) after the reactor 

trip. Originally, the CET was calculated by collecting 

the CETs of the four quadrants, but only one CET was 

considered in this simulation. A situation in which 

recirculation is not possible was assumed, and a total of 

4 scenario datasets were divided in consideration of the 

break location and safety system operation. In this study, 

the safety system means auxiliary feedwater system, 

containment spray system, high pressure safety 

injection, and low pressure safety injection. The data 

were divided into train, validation, and test datasets for 

each scenario. The specific number of data is shown in 

Table I. 

 

Table I: LOCA scenario classification 

No. Scenario 

Safety 

system 

operation 

Number of data 

(train/validation/test) 

1 
Cold-leg 

LOCA 

On 80/20/17 

2 Off 80/20/16 

3 
Hot-leg 

LOCA 

On 80/20/17 

4 Off 80/20/17 

 
As for the input variables applied to model 

development, the top 6 variables were selected from the 

feature importance graph provided by the EBM model 

for each scenario. Fig. 1 shows the feature importance 

results using the EBM model. In addition, the input 

variables used for each scenario are shown in Table II.  

 
 

Fig. 1. Feature importance in cold-leg, safety system-off 

LOCA scenario. 

 

Table Ⅱ: Input variables for each scenario 

No. Scenario 

Safety 

system 

operation 

Input variables 

1 

Cold-leg 

LOCA 

On 

Pressurizer pressure,  

Reactor pressure vessel H2 

mole fraction,  

Primary system water level, 

Refueling water storage 

tank water level, 

Broken steam generator   

temp, 

Containment temp 

2 Off 

Primary system water level, 

Broken steam generator 

temp, 

Reactor pressure vessel 

water level, 

Unbroken steam generator   

temp, 

Steam generator water 

level, 

Steam generator pressure 

3 

Hot-leg 

LOCA 

On 

Pressurizer pressure, 

Primary system water level, 

Reactor pressure vessel 

water level, 

Pressurizer water level, 

Steam generator pressure, 

Containment temp 

4 Off 

Pressurizer pressure, 

Primary system water level, 

Refueling water storage 

tank water level, 

Steam generator water 

level, 

Containment pressure, 

Containment temp 

https://ko.wikipedia.org/wiki/%EC%88%98%EC%86%8C
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4. Result 

 

In this study, the severe accident entry time was 

predicted based on the CET. A total of 4 scenarios were 

utilized involving break location and safety system 

operation, and the model predicted after 10 minutes. 

The prediction was performed using EBM, with the 

CET specified as the dependent variable. Root mean 

squared error (RMSE) and R-squared (R²) were used as 

evaluation metrics of the model. The equations of the 

evaluation metrics are shown in Eqs. (3) and (4). 

 
2( )predy y

RMSE MSE
n

 −
= =  (3) 

 
2

2

2

( )SSE SSR
R  = 1 1

SST SST ( )

pred

mean

y y

y y

 −
= − = −

 −
 (4) 

 

In the equations, y  represents the actual value, 
predy  

represents the predicted value of the model, and meany  is 

the average of the actual values. The lower RMSE value 

and the R² value closer to 1 indicate better prediction 

performance. Figs. 2 to 5 show the CET prediction 

results for the test dataset from each of the 4 scenarios. 

As a result, the CET reached 922K at 5860 seconds 

after the reactor trip when the safety system was 

operated in the cold-leg LOCA scenario. On the other 

hand, when the safety system was not operated, the 

CET reached this threshold at 2377 seconds after the 

reactor trip. Additionally, in the hot-leg LOCA scenario, 

if the safety system was operated, the CET reaches 

922K after 3858 seconds, whereas if the safety system 

was not operated, it is reached after 1066 seconds. The 

figures show that the prediction after 10 minutes 

performed well. Table III represents the performance 

metrics of the predictive model for each scenario. It 

shows that the RMSE are within 9 and R² are all 0.99.  

 

 
Fig. 2. Prediction results for cold-leg, safety system-on LOCA 

scenario. 

 

 
Fig. 3. Prediction results for cold-leg, safety system-off 

LOCA scenario. 

 

 
Fig. 4. Prediction results for hot-leg, safety system-on LOCA 

scenario. 

  

 
Fig. 5 Prediction results for hot-leg, safety system-off LOCA 

scenario. 

 

The biggest reason for using EBM for prediction is 

its explainability. Since EBM performs a prediction and 

at the same time explains why the predicted value was 

derived, the reliability of the predicted value is 

improved. EBM explains the reason for the prediction 

by presenting the contribution of each variable to the 

predicted value. 

 

Table Ⅲ: Prediction performance of EBM model 
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Scenario 
Safety system 

operation 
RMSE R² 

Cold-leg 

LOCA 

On 4.65 0.99 

Off 5.81 0.99 

Hot-leg 

LOCA 

On 8.36 0.99 

Off 6.51 0.99 

 

Fig. 6 shows the contribution of each variable that 

made the model derive the predicted value in the cold-

leg, safety system-off scenario. Figure 7 shows the 

contribution of the variables in the hot-leg, safety 

system-off scenario. Through Figs. 6 and 7, the 

variables in Table Ⅱ and the interaction of each variable 

have positive and negative contributions. In the case of 

cold-leg, safety system-off scenario and hot-leg, safety 

system-off scenario, primary system water level and 

reactor pressure vessel water level had the largest 

contribution. 

 

 
 
Fig. 6. Contribution of variables to predicted values in the 

cold-leg, safety system-off LOCA scenario. 

 

 
 
Fig. 7. Contribution of variables to predicted values in the hot-

leg, safety system-off LOCA scenario. 

 

5. Conclusions 

 

In this study, the entry time of a severe accident was 

predicted through CET prediction using EBM. The 

study results indicate that EBM exhibits high prediction 

performance. In addition, EBM not only provides the 

predicted value but also explains the basis for the 

prediction through explainability. This enhances the 

reliability of the model. Moreover, it facilitates the 

identification of input variables that significantly 

influence the dependent variable. The study shows that 

EBM successfully predicts the CET while providing an 

explanation of variables. It is expected to be beneficial 

for supporting operators, including prediction and early 

warning systems, in NPPs. 
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