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1. Introduction 

 
Artificial intelligence(AI) technology is actively 

applied not only for the computer science fields but also 
for the other engineering fields. In nuclear engineering 
field, AI models are adopted for various purposes 
including: signal validation/reconstruction[1, 2], event 
diagnosis[3], trend prediction[4], and 
automation/autonomous operation[5]. Most of these 
studies are based on deep neural network(DNN)-based 
models, since DNN models have shown best 
performances all along the data-driven problems.  

Although DNN models are showing high 
performance, their practical applications on critical 
domains such as nuclear or medical are hindered due to 
its low explainability. In general, low explainability 
means that the relation between model’s inputs and 
outputs are not explicitly revealed. Low explainability 
may negatively affects the overall trustworthiness of the 
model, leading to the decreased public acceptance and 
feasibility of practical applications.  

To enhance the explainability and trustworthiness of 
DNN models, various explainable AI(XAI) methods 
have been proposed[6]. Most of existing XAI methods 
are developed and verified based on image or natural 
language data. Although many XAI methods can be 
applied to the time-series data, studies on their 
effectiveness and validity are still insufficient. Since 
nuclear field is one of the representative safety-critical 
domain and AI application on nuclear field mostly 
based on time-series data, studies on XAI methods that 
effectively work for time-series data are essential.  

Another problem during the application of XAI 
method is that, it is difficult to determine which XAI 
method is better. This problem is due to the inexistence 
of quantitative standards on ‘good explanation’. 
Accordingly, many studies have been relied on human 
or domain experts for qualitative explanation evaluation, 
which could be ambiguous and biased to the 
conventional knowledge or common sense. Especially, 
since time-series data is relatively more difficult for 
intuitive interpretation, relying on human evaluation is 
even more infeasible.  

In this study, we investigated about the proper 
application methods of perturbation analysis, which 
enables the quantitative comparison between XAI 

methods that deduces relative importance of input 
elements(i.e. attribution score) for deducing specific 
output. During the perturbation analysis, values of input 
elements are changed into pre-defined value(i.e. 
perturbing value) in the order of importance, and 
corresponding output changes are observed. As there 
are only few studies on XAI and perturbation analysis 
applications for time-series data, we developed time-
series data-based accident scenario classification model 
and used it for the further experiments. 

Configuration of this paper is as follows. In section 2, 
description about the overall methods and experiment 
results will be presented including the development of 
accident scenario classification model, application of 
XAI method, application of perturbation analysis, and 
method for selecting perturbing value. Section 3 will 
summarize and conclude the paper.  

 
2. Methods and Results 

 
2.1 Development of Accident Scenario Classification 
Model  

 
The developed accident scenario classification model 

receives 900 seconds and 19 kinds of instrumentation 
signals as input (with 17,100-length vector) and deduces 
classification probabilities corresponding to 
SGTR(steam generator tube rupture)- and MSLB(main 
steam line break)-based five accident scenarios 
(SGTR/A, SGTR/2A, SGTR/4A, MSLB/A, MSLB/2A) 
as output. Here, ‘A’ implies the relative break size. Data 
was acquired through MARS(multi-dimensional 
analysis of reactor safety) code. During the simulation, 
operator actions were considered to ensure data 
diversity.  

The model is constructed with fully-connected layer 
only, to simplify the processes for XAI method 
application. Developed model consists of five fully-
connected layers, and has shown about 93.1% accuracy 
for 84,625 training data and 91.6% accuracy for 20,000 
testing data[7]. Fig. 1 is a schematic of the developed 
accident scenario classification model. 
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Fig. 1. Schematic of the developed accident scenario 
classification model 

 
2.2 Application of XAI Method  

 
After the development of the model, four kinds of 

representative XAI methods were applied[7]. These 
methods are; integrated gradients(IG), gradient SHAP, 
DeepLift, and layer-wise relevance propagation(LRP). 
These methods deduce attribution scores for every input 
elements, which imply the relative importance of input 
element for deducing specific output. However, 
although the input is same, the order of deduced 
attribution scores can be different since their underlying 
algorithms are not same.  

Fig. 2 shows the example of XAI method application 
results for 10,000-th data and 17-th variable(RCS 
subcooling margin). It can be easily found that the 
trends of attribution scores are highly distinct to each 
other, although these results are deduced for same data 
and variable.   

 

 
Fig. 2. Example of XAI method application results 
 
2.3 Application of Perturbation Analysis  

 
After the application of XAI methods, perturbation 

analysis is conducted. Perturbation analysis is a method 
that observes the changes of output, while iteratively 
changing the input elements to the random or pre-
defined value, starting from the higher attribution score. 
Perturbation analysis is based on the idea that if the XAI 
method has found important input elements better, the 
probability value for correct label would be rapidly 
decreased, since important input element is changed into 
meaningless or neutral value. Processes of perturbation 
analysis are as follows. 

 
1) Data selection: randomly selects data that model 

correctly classifies, from both training and testing 
datasets. 

2) Calculating attribution score: calculates attribution 
scores for selected data for each XAI method. 

3) Sorting: arrange the attribution scores derived from 
each XAI method in descending order. 

4) Perturbation infusion: replace input element as 
random value, starting from the element with higher 
attribution score. 

5) Probability calculation: apply replaced input to the 
sample model and calculate the probability for true label. 

 
Procedures 4) and 5) are repeated to infuse 

perturbation for multiple input elements, and entire 
procedures are repeated to conduct perturbation 
analyses for multiple data.   

It is extremely important to define meaningless or 
neutral value to appropriately conduct perturbation 
analysis. Generally, for the image data, this value is set 
to ‘0’ for greyscale color encoding or (0, 0, 0) for RGB 
color encoding. For the time-series data however, 
defining meaningless or neutral value is much harder as 
it highly depends on the characteristics of data. 
Therefore, further experiments were conducted for the 
various perturbing values. 

In this study, 500 data that correctly classified by the 
model were selected randomly, and perturbations were 
infused up to the 1,710-th input elements(10% of total 
input elements) during the perturbation analysis. For the 
perturbing value candidates including random(sampled 
from uniform distribution), zero, one, and inverse(1-x), 
perturbation analyses were repeatedly conducted. For 
the perturbation infusing orders, additional to the orders 
deduced from the XAI methods, random perturbation 
order is also considered for comparison. Following 
figures(Fig. 3, Fig. 4, Fig. 5, and Fig. 6) represent the 
results of perturbation analyses, corresponding to the 
each perturbing value. It is easily found that the trends 
of output probability changes are highly different, 
according to the applied XAI method and perturbing 
value. 

 

 
Fig. 3. Result of perturbation analysis for ‘random’ perturbing 
value  
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Fig. 4. Result of perturbation analysis for ‘zero’ perturbing 
value  
 

 
Fig. 5. Result of perturbation analysis for ‘one’ perturbing 
value  
 

 
Fig. 6. Result of perturbation analysis for ‘inverse’ perturbing 
value  
 
2.4 Method for Selecting Perturbing Value  

 
The results from perturbation analysis are highly 

affected by the perturbing value settings. However, it is 
difficult to find meaningless or neutral value, especially 
for the time-series data.  

If the perturbing value is optimal(i.e. perfectly value-
neutral), the output for N-class classifier will be a vector 
that every elements have same value of 1/N(i.e. 
perfectly uncertain), when all input elements are 
changed into that perturbing value. If the perturbing 
value is sub-optimal but value-neutral enough to 
conduct perturbation analysis, the probability values for 

every classes will become more similar and the 
uncertainty of the output will become more higher while 
more and more input elements are changed. Based on 
this idea, we propose to utilize information entropy as a 
scale for selecting perturbing value. If the specific 
perturbing value is more value-neutral than the others, 
information entropy of the output will more rapidly 
increased along with the progression of perturbation 
analysis. 

Consequently, it is able to quantitatively compare and 
select best XAI method through, 1) select the perturbing 
value that mostly increases information entropy, 2) 
conduct the perturbation analysis based on the selected 
perturbing value, 3) find the XAI method that mostly 
decreases output probability for correct label. 

In this study, additional experiments were conducted 
to confirm which perturbing value is more appropriate 
for conducting perturbation analysis. Same to the 
previous sub-section, 500 data that correctly classified 
by the model were selected randomly, and perturbations 
were infused up to the entire 17,100 input 
elements(100% of total input elements) during the 
perturbation analysis. For the perturbing values, random, 
zero, one, and inverse were considered. For the 
perturbation infusing orders instead of the order 
deduced from the XAI method application, three kinds 
of orders were tested including: randomly select 
perturbation points(among 17,100 input elements), 
variable-wise perturbation(among 19 kinds of variables), 
and timestep-wise perturbation(45 seconds as unit 
timestep, among 900 seconds of time length). 

Following figures(Fig. 7, Fig. 8, and Fig. 9) represent 
the mean entropy profiles for every perturbation 
infusion orders. It is easily found that the trends of mean 
information entropy are increased only when the 
perturbing value is zero for every perturbation orders. It 
implies that for the given model and data, perturbing 
value ‘0’ is most appropriate among four kinds of 
perturbing value candidates, for conducting perturbation 
analysis. Moreover, it can be concluded that the 
‘integrated gradients’ is deducing best explanations 
among four kinds of applied XAI methods, as it was 
shown most rapid probability decrement during the 
perturbation analysis with perturbing value is set to 
‘0’(corresponds to Fig. 4). This result is also accorded 
with the result that the random perturbation order has 
shown almost no decrement during the perturbation 
analysis with same perturbing value settings.  
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Fig. 7. Mean entropy profiles for random perturbation points 

 

 
Fig. 8. Mean entropy profiles for variable-wise perturbations 

 

 
Fig. 9. Mean entropy profiles for timestep-wise perturbations  

 
3. Conclusions 

 
In this study, a simple accident scenario classification 

model based on DNN is developed, and various XAI 
methods are applied to deduce attribution scores. Then, 
perturbation analysis is conducted to quantitatively 
compare XAI methods on the model that uses time-
series data. During the experiment, to deal with the 
problem that the results of perturbation analysis are 
heavily affected by the perturbing value, information 
entropy-based perturbing value selection method is 
proposed. Through the experiment, it is concluded that 
among the applied four kinds of XAI methods, 
integrated gradients deduced best explanations for given 
model and data. This experiment can be conducted 

similarly for the other models and XAI methods that 
deduce attribution score.  

However, the best XAI method may changes 
according to the characteristics of model and data. In 
this point of view, the implication of this study is that 
the proper XAI method should be selected based on the 
perturbation analysis and proposed perturbing value 
selection method,  not integrated gradients is the best 
XAI method for time-series data-based models applied 
in nuclear field. 

There is a limitation that based on the perturbation 
analysis and the proposed perturbing value selection 
method, only quantitative yet relative comparison is 
possible. Experiment conducted in this study only 
reveals which XAI method is the best among the applied 
candidates, while it does not reveal whether the deduced 
explanation is valid or meaningful. Therefore, as a 
further study, we are planning to adopt and enhance 
sanity check[8] method for time-series data-based 
models.   

 
ACKNOWLEDGMENT 

 
This work was supported by a National Research 

Foundation of Korea (NRF) grant funded by the Korean 
government (MSIT: Ministry of Science, ICT) (No. RS-
2022-00144405). 
 

REFERENCES 
 

[1] Y. H. Choi, G. M. Yoon, and J. H. Kim, Unsupervised 
Learning Algorithm for Signal Validation in Emergency 
Situations at Nuclear Power Plants, Nuclear Engineering and 
Technology, Vol. 54, No. 4, pp. 1230-1244, 2022. 
[2] S. G. Kim, Y. H. Chae, and P. H. Seong, Development of 
a Generative-adversarial-network-based Signal 
Reconstruction Method for Nuclear Power Plants, Annals of 
Nuclear Energy, Vol. 142, 2020. 
[3] Y. H. Chae, C. Y. Lee, S. M. Han, and P. H. Seong, Graph 
Neural Network based Multiple Accident Diagnosis in 
Nuclear Power Plants: Data Optimization to Represent the 
System Configuration, Nuclear Engineering and Technology, 
Vol 54, No. 8, pp. 2859-2870, 2022. 
[4] S. H. Ryu, H. M. Kim, S. G. Kim, J. H. Jin, J. H. Cho, and 
J. K. Park, Probabilistic Deep Learning Model as a Tool for 
Supporting the Fast Simulation of a Thermal-hydraulic Code, 
Expert Systems with Applications, Vol. 200, 2022. 
[5] D. I. Lee, M. Arigi, and J. H. Kim, Algorithm for 
Autonomous Power-increase Operation using Deep 
Reinforcement Learning and a Rule-based System, IEEE 
Access, 2020. 
[6] Y. Zhang, P. Tino, A. Leonardis, and K. Tang, A Survey 
on Neural Network Interpretability, IEEE  Transactions on 
Emerging Topics in Computational Intelligence, Vol. 5, No. 5, 
2021. 
[7] S. G. Kim, and J. H. Cho, Comparative Study of 
Explainable Artificial Intelligence Methods in Nuclear Field, 
32nd European Safety and Reliability Conference(ESREL 
2022), Aug.28-Sep.1, 2022, Dublin, Ireland. 
[8] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. 
Hardt, and B. Kim, Sanity Checks for Saliency Maps, 



Transactions of the Korean Nuclear Society Autumn Meeting 
Gyeongju, Korea, October 26-27, 2023 

 
 
Proceedings of the 32nd International Conference on Neural 
Information Processing Systems(NIPS’18), Dec.3-8, Montreal, 
Canada. 
 


